ОСОБЕННОСТИ ЛЕТНЕГО ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ФОСФОРА, АЗОТА И ХЛОРОФИЛЛА-а В КРУПНОМ ЭВТРОФИРУЕМОМ АРКТИЧЕСКОМ ОЗЕРЕ ИМАНДРА (МУРМАНСКАЯ ОБЛАСТЬ) В СВЯЗИ С МАССОВЫМ РАЗВИТИЕМ ФОТОСИНТЕЗИРУЮЩИХ МИКРООРГАНИЗМОВ

Н.А. Кашулин, А.К. Бекклунд, В.А. Даувальтер

Аннотация


В крупном эвтрофируемом арктическом озере Имандра с начала XXI века наблюдается регулярное массовое размножение (цветение) потенциально токсичных фотосинтезирующих микроорганизмов, вызывающих гибель рыб и представляющих угрозу здоровью населения. Эти явления (Harmful Algal Blooms, HABs) происходят в оз. Имандра при значительно более низких температурах и содержаниях P и N по сравнению с более южными регионами. В связи с этим рассмотрены взаимосвязи и особенности летнего пространственного распределения хлорофилла а и соединений азота и фосфора в поверхностном горизонте вод озера. Сложная пространственная структура водоема, выраженные стоковые течения и мощные точечные антропогенные источники биогенных элементов создают условия для их градиентного распределения по акватории. Результаты их изучения приводят к выводу о совместном лимитировании развития HABs содержанием N и P в воде и их стехиометрическими соотношениями. При суммарных уровнях Pобщ < 17 мкг/л и Nобщ < 150 мкг/л вероятность HABs невелика. При Pобщ > 17 мкг/л фосфор не является лимитирующим элементом, и развитие HABs лимитируют соединения азота. При Nобщ > 180 мкг/л вероятность развития HABs повышается. Для большей части акватории характерны нахождение значительной части азота в органической форме и дефицит NO3– на фоне преобладания NH4+ среди минеральных форм. Это создает условия доминирования цианобактерий и успешного развития зеленых водорослей. При соотношениях концентраций [NO3–]:[NH4+] в диапазоне 0,1–1,0 существует высокая вероятность развития HABs, вызываемых цианобактериями. Развитию HABs будут способствовать концентрации NO3– > 2,5 мкг/л при концентрациях РО43– > 3,1 мкг/л. При этом индекс N:P должен превышать 9,7. Установленные критические уровни концентраций соединений N и P позволяют прогнозировать развитие HABs и способствуют пониманию механизмов его формирования в арктических водоемах.

Ключевые слова


Арктика, хлорофилл а, эвтрофикация, Harmful Algal Blooms (HABs)

Полный текст:

PDF

Литература


1. Денисов Д, Кашулин Н. Цианопрокариоты в составе планктона озера Имандра (Кольский полуостров). Труды Кольского научного центра РАН. 2014;4(7):40-57.

2. Денисов ДБ, Кашулин НА. Современное состояние водорослевых сообществ планктона в зоне влияния Кольской АЭС (оз. Имандра). Труды Кольского научного центра РАН. 2013;3(3):68-93.

3. Кашулин Н, Даувальтер В, Денисов Д, Валькова С, Вандыш О, Терентьев П. Комплексные исследования пресноводных экосистем Фенноскандии. Труды Кольского научного центра РАН. 2018;9(6):34-86.

4. Кашулин Н, Даувальтер В, Котельников В. Поверхностные воды Евро-Арктического региона в условиях глобальных изменений климата. Анализ, прогноз и управление природными рисками с учетом глобального изменения климата. ГЕОРИСК-2018; 2018.

5. Кашулин НА, Беккелунд А, Даувальтер ВА, Петрова ОВ. Апатитовое горно-обогатительное производство и эвтрофирование арктического озера Имандра. Арктика: экология и экономика. 2019(3):16-34.

6. Моисеенко Т, Даувальтер В, Лукин А, Кудрявцева Л и соавт. Антропогенные модификации экосистемы озера Имандра. М.: Наука; 2002.

7. Никаноров А. Гидрохимия. СПб.: Гидрометеоиздат; 2001.

8. Росэнергоатом. Отчет об экологической безопасности за 2018 год.: Кольская АЭС. https://rosatom.ru/upload/iblock/d68/d68934ec26c9a5d00078147b911cf8ba.pdf

9. Патова Е. Цианопрокариоты, вызывающие «цветение» воды в Харбейских озерах Большеземельской тундры. Журнал Сибирского федерального университета сер. биол. 2014;7(3):282-90.

10. Елшин ЮА, Куприянов ВВ, ред. Ресурсы поверхностных вод СССР. Том 1. Кольский полуостров. Л.: Гидрометиздательство; 1970.

11. Терентьев П, Кашулин Н, Зубова Е. Роль европейской корюшки Osmerus eperlanus (Linnaeus) в структуре ихтиофауны бассейна оз. Имандра (Мурманская область). Труды Зоологического института РАН. 2017;321(2):228-43.

12. Терентьева ИА, Кашулин НА, Денисов ДБ. Оценка трофического статуса субарктического озера Имандра. Вестник Мурманского государственного технического университета. 2017;20(1-2):197-204.
13. Шаров АН. Фитопланктон холодноводных озерных экосистем под влиянием природных и антропогенных факторов. Автореф дисс. … докт. биол. наук. СПб.; 2020.

1. Denisov D, Kashulin N. [Cyanoprokaryotes in the plankton of Lake Imandra (Kola Peninsula)]. Trudy Kol'skogo Nauchnogo Tsentra RAN. 201;4(7):40-57. (In Russ.)

2. Denisov DB, Kashulin NA. [The current state of algal plankton communities in the zone of influence of the Kola NPP (Lake Imandra)]. Trudy Kol'skogo nauchnogo tsentra RAN. 2013;3(3):68-93. (In Russ.)

3. Kashulin N, Dauval'ter V, Denisov D, Val'kova S, Vandysh O, Terent'yev P et al. [Comprehensive studies of freshwater ecosystems of Fennoscandia]. Trudy Kol'skogo nauchnogo tsentra RAN. 2018;9(6):34-86. (In Russ.)

4. Kashulin N, Dauval'ter V, Kotel'nikov V. [Surface waters of the Euro-Arctic region under conditions of global climate change. analysis, forecast and natural risk management taking into account the global change of climate]. "GEORISK-2018"; 2018. (In Russ.)

5. Kashulin NA, Bekkelund A, Dauval'ter VA, Petrova OV. [Apatite mining and enrichment production and eutrophication of the arch of the Imandra lake]. Arktika: ekologiya i ekonomika. 2019(3):16-34. (In Russ.)

6. Moiseyenko T, Dauval'ter V, Lukin A, Kudryavtseva L, Ilyashuk B, Ilyashuk Ye, et al. Antropogennye Modifikatsii Ekosistemy Ozera Imandra. [Anthropogenic Modifications of the Ecosystem of the Lake Imandra]: Moscow: Nauka; 2002. (In Russ.)

7. Nikanorov A. Gidrokhimiya [Hydrochemistry]. Saint Petersburg: Gidrometeoizdat; 2001. (In Russ.)

8. Rosenergoatom. Otchet ob Ekologicheskoy Bezopasnosti za 2018 god: Kolskaya AES. [Environmental Safety Report for 2018: Kolskaya Nuclear Power Plant]. https://rosatom.ru/upload/iblock/d68/d68934ec26c9a5d00078147b911cf8ba.pdf (In Russ.)

9. Patova Ye. [Cyanoprokaryotes causing water “bloom” in Harbey lakes of Bolshezemelskaya tundra]. Zhurnal Sibirskogo Federalnogo Universiteta Biologiya. 2014;7(3):282-90. (In Russ.)

10. Yelshin YuA, Kupriyanov VV, Eds. Resursy Poverkhnostnykh Vod SSSR. Tom 1. Kolskiy Poluostrov. [Resources of Surface Waters of the USSR. Volume 1 Kola Peninsula]. Leningrad: Gidrometizdatel'stvo; 1970. (In Russ.)

11. Terentyev P, Kashulin N, Zubova Ye. [Role of the European smelt Osmerus eperlanus (Linnaeus) in the structure of ichthyofauna of Lake Imandra basin. (Murmansk region)]. Trudy Zoologicheskogo Instituta RAN. 2017;321(2):228-43. (In Russ.)

12. Terentyeva IA, Kashulin NA, Denisov DB. [Assessment of the trophic status of the subarctic lake Imandra]. Vestnik Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2017;20(1-2):197-204. (In Russ.)

13. Sharov AN. [Phytoplankton of cold-water lake ecosystems under influence of natural and anthropogenic factors]. PhD Theses. Saint Petersburg; 2020. (In Russ.)

14. Abell JM, Özkundakci D, Hamilton DP, Jones JR. Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study. Fundamental and Applied Limnology. Arch für Hydrobiologie. 2012;181(1):1-14.

15. Anderson DM, Cembella AD, Hallegraeff GM. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Marine Sciee. 2012;4:143-76.

16. Balakrishnan N. Methods and Applications of Statistics in the Life and Health Sciences. John Wiley & Sons; 2009.

17. Beall B, Twiss M, Smith D, Oyserman B, Rozmarynowycz M, Binding C, et al. Ice cover extent drives phytoplankton and bacterial community structure in a large north‐temperate lake: implications for a warming climate. Environ Microbiol. 2016;18(6):1704-19.

18. Beaver JR, Tausz CE, Scotese KC, Pollard AI, Mitchell RM. Environmental factors influencing the quantitative distribution of microcystin and common potentially toxigenic cyanobacteria in US lakes and reservoirs. Harmful Algae. 2018;78:118-28.

19. Berges JA, Jiang Y, Sterner RW, Bullerjahn GS, Ivanikova NA, McKay RM. Identification of factors constraining nitrate assimilation in Lake Superior, Laurentian Great Lakes. Hydrobiologia. 2014;731(1):81-94.

20. Beversdorf LJ, Chaston SD, Miller TR, McMahon KD. Microcystin mcyA and mcyE gene abundances are not appropriate indicators of microcystin concentrations in lakes. PLoS One. 2015;10(5).

21. Beversdorf LJ, Miller TR, McMahon KD. Long-term monitoring reveals carbon–nitrogen metabolism key to microcystin production in eutrophic lakes. Frontn Microbiol. 2015;6:456.

22. Broberg O, Persson G. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia. 1988;170(1):61-90.

23. Brooks BW, Grover JP, Roelke DL. Prymnesium parvum: an emerging threat to inland waters. Environ Toxicol Chemy. 2011;30(9):1955-64.

24. Brooks BW, Lazorchak JM, Howard MD, Johnson MVV, Morton SL, Perkins DA, et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicolog Chem. 2016;35(1):6-13.

25. Bullerjahn GS, McKay RM, Davis TW, Baker DB, Boyer GL, D’Anglada LV, et al. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae. 2016;54:223-38.

26. Canavan R, Slomp C. Phosphorus cycling in the sediment of a coastal freshwater lake and response to salinization. In: Biogeochemical Cycling of Nutrients and Trace Metals in the Sediment of Haringvliet Lake: Response to Salinization; 2006. P. 95-113.

27. Carmichael WW, Boyer GL. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae. 2016;54:194-212.

28. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock W, Cline T, et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science. 2011;332(6033):1079-82.

29. Conroy JD, Edwards WJ, Pontius RA, Kane DD, Zhang H, Shea JF, et al. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biol. 2005;50(7):1146-62.

30. Conroy JD, Kane DD, Dolan DM, Edwards WJ, Charlton MN, Culver DA. Temporal trends in Lake Erie plankton biomass: roles of external phosphorus loading and dreissenid mussels. J Great Lakes Res. 2005;31(Suppl 2):89-110.

31. Dauvalter V, Kashulin N. Assessment of the ecological state of the Arctic Freshwater system based on concentrations of heavy metals in the bottom sediments. Geochem Internat. 2018;56(8):842-56.

32. Dauvalter VA, Kashulin NA. Mercury pollution of Lake Imandra sediments, the Murmansk Region, Russia. Int J Environl Res. 2018;12(6):939-53.

33. Davis TW, Gobler CJ. Preface for Special Issue on “Global expansion of harmful cyanobacterial blooms: Diversity, ecology, causes, and controls”. Harmful Algae. 2016;100(54):1-3.

34. Determination of Photosynthetic Pigments in Sea-Water. UNESCO; 1966.

35. Domingues RB, Anselmo TP, Barbosa AB, Sommer U, Galvão HM. Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary. Estuarine Coastal Shelf Sci. 2011;91(2):282-97.

36. Donald DB, Bogard MJ, Finlay K, Leavitt PR. Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol Oceanogr. 2011;56(6):2161-75.

37. Duval S, Danyal K, Shaw S, Lytle AK, Dean DR, Hoffman BM, et al. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis. Proc Natl Acad Sci USA. 2013;110(41):16414-9.

38. Filstrup CT, Downing JA. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters. 2017;7(4):385-400.

39. Finlay K, Patoine A, Donald DB, Bogard MJ, Leavitt PR. Experimental evidence that pollution with urea can degrade water quality in phosphorus‐rich lakes of the Northern Great Plains. Limnol Oceanogr. 2010;55(3):1213-30.

40. Glibert P, Burkholder J. The complex relationships between increases in fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. In: Ecology of Harmful Algae: Springer; 2006. P. 341-54.

41. Glibert P, Legrand C. The diverse nutrient strategies of harmful algae: focus on osmotrophy. In: Ecology of Harmful Algae: Springer; 2006. P. 163-75.

42. Glibert PM, Burkholder JM, Parrow MW, Lewitus AJ, Gustafson DE. Direct uptake of nitrogen by Pfiesteria piscicida and Pfiesteria shumwayae, and nitrogen nutritional preferences. Harmful Algae. 2006;5(4):380-94.

43. Glibert PM, Burkholder JM. Harmful algal blooms and eutrophication:“strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chinese J Oceanol Limnol. 2011;29(4):724-38.

44. Glibert PM, Fullerton D, Burkholder JM, Cornwell JC, Kana TM. Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems. Rev Fisheries Sci. 2011;19(4):358-417.

45. Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, et al. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen‐enriched conditions. Limnol Oceanogr. 2016;61(1):165-97.

46. Glibert PM. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae. 2020;91:101583.

47. Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, et al. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae. 2016;54:87-97.

48. Guildford SJ, Hecky RE. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr. 2000;45(6):1213-23.

49. Håkanson L, Jansson M. Principles of Lake Sedimentology. Berlin: Springer-Verlag; 1983.

50. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae. 2016;54:4-20.

51. Harris TD, Smith VH, Graham JL, Van de Waal DB, Tedesco LP, Clercin N. Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters. 2016;6(2):199-210.

52. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, et al. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae. 2008;8(1):3-13.

53. Humbert S, Tarnawski S, Fromin N, Mallet M-P, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 2010;4(3):450-4.

54. Jones JR, Bachmann RW. Prediction of phosphorus and chlorophyll levels in lakes. J Water Pollut Contr Federat. 1976:2176-82.

55. Kashulin NA, Dauvalter VA, Denisov DB, Valkova SA, Vandysh OI, Terentjev PM, et al. Selected aspects of the current state of freshwater resources in the Murmansk region, Russia. J Environ Sci Health. Pt A. Toxic/Hazardous Substances Environ Engineer. 2017;52(9):921-9.

56. Leong SCY, Murata A, Nagashima Y, Taguchi S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon. 2004;43(4):407-15.

57. Loken LC, Small GE, Finlay JC, Sterner RW, Stanley EH. Nitrogen cycling in a freshwater estuary. Biogeochemistry. 2016;127(2-3):199-216.

58. Matisoff G, Kaltenberg EM, Steely RL, Hummel SK, Seo J, Gibbons KJ, et al. Internal loading of phosphorus in western Lake Erie. J Great Lakes Res. 2016;42(4):775-88.

59. McCauley E, Downing JA, Watson S. Sigmoid relationships between nutrients and chlorophyll among lakes. Can J Fisheries Aquat Sci. 1989;46(7):1171-5.

60. Monchamp M-E, Pick FR, Beisner BE, Maranger R. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PloS One. 2014;9(1).

61. Nojavan F, Kreakie BJ, Hollister JW, Qian SS. Rethinking the lake trophic state index. PeerJ. 2019;7:e7936.

62. Nürnberg GK. Assessing internal phosphorus load–problems to be solved. Lake Reservoir Manag. 2009;25(4):419-32.

63. O’Neil J, Davis T, Burford M, Gobler C. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae. 2012;14:313-34.

64. Okolodkov YB. The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae. 2005;4(2):351-69.

65. Orihel DM, Schindler DW, Ballard NC, Graham MD, O'Connell DW, Wilson LR, et al. The “nutrient pump:” Iron‐poor sediments fuel low nitrogen‐to‐phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol Oceanogr. 2015;60(3):856-71.

66. Paerl HW, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, et al. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae. 2016;54:213-22.

67. Paerl HW, Scott JT, McCarthy MJ, Newell SE, Gardner WS, Havens KE, et al. It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ SciTechnol. 2016;50(20):10805-13.

68. Parparov A, Gal G, Hamilton DP, Kasprzak P, Ostapenia A. Water quality assessment, trophic classification and water resources management. J Water Resource Protection 2010;2:907-915.

69. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011.

70. Rai H. Methods involving the determination of photosynthetic pigments using spectrophotometry: With 4 figures and 9 tables in the text. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen. 1973;18(3):1864-75.

71. Redfield AC. The biological control of chemical factors in the environment. Amer Sci. 1958;46(3):230A-21.

72. Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evolut. 2003;18(12):648-56.

73. Scheffer M, Straile D, van Nes EH, Hosper H. Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr. 2001;46(7):1780-3.

74. Schindler D. Evolution of phosphorus limitation in lakes. Science. 1977;195(4275):260-2.

75. Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM. Reducing Phosphorus to Curb Lake Eutrophication is a Success. ACS Publications; 2016.

76. Schindler DW, Hecky RE, Findlay D, Stainton M, Parker B, Paterson M, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci. 2008;105(32):11254-8.

77. Schubert CJ, Durisch‐Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MM. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol. 2006;8(10):1857-63.

78. Scott JT, McCarthy MJ, Paerl HW. Nitrogen transformations differentially affect nutrient‐limited primary production in lakes of varying trophic state. Limnol Oceanogr Lett. 2019;4(4):96-104.

79. Smayda TJ, Reynolds CS. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res. 2001;23(5):447-61.

80. Smayda TJ, Reynolds CS. Strategies of marine dinoflagellate survival and some rules of assembly. J Sea Res. 2003;49(2):95-106.

81. Smayda TJ. Novel and Nuisance Phytoplankton Blooms in the Sea: Evidence for a Global Epidemic. RWS-North Sea Directorate; 1990.

82. Smayda TJ. What is a bloom? A commentary. Limnol Oceanogr. 1997;42(5, Pt 2):1132-6.

83. Smith VH. Effects of eutrophication on maximum algal biomass in lake and river ecosystems. Inland Waters. 2016;6(2):147-54.

84. Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. 1983;221(4611):669-71.

85. Sterner RW, Anagnostou E, Brovold S, Bullerjahn GS, Finlay JC, Kumar S, et al. Increasing stoichiometric imbalance in North America's largest lake: nitrification in Lake Superior. Geoph Res Lett. 2007;34(10).

86. Sterner RW. On the phosphorus limitation paradigm for lakes. Int Rev Hydrobiol. 2008;93(4‐5):433-45.

87. Stucken K, John U, Cembella A, Soto-Liebe K, Vásquez M. Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins. 2014;6(6):1896-915.

88. Swarbrick VJ, Simpson GL, Glibert PM, Leavitt PR. Differential stimulation and suppression of phytoplankton growth by ammonium enrichment in eutrophic hardwater lakes over 16 years. Limnol Oceanogr. 2019;64(S1):S130-S49.

89. Thamdrup B. New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evolut Systemat. 2012;43:407-28.

90. Tomasek A, Staley C, Wang P, Kaiser T, Lurndahl N, Kozarek JL, et al. Increased denitrification rates associated with shifts in prokaryotic community composition caused by varying hydrologic connectivity. Front Mcrobiol. 2017;8:2304.

91. Visser PM, Ibelings BW, Bormans M, Huisman J. Artificial mixing to control cyanobacterial blooms: a review. Aquat Ecol. 2016;50(3):423-41.

92. Wells ML, Trainer VL, Smayda TJ, Karlson BS, Trick CG, Kudela RM, et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae. 2015;49:68-93.

93. Willis A, Chuang AW, Burford MA. Nitrogen fixation by the diazotroph Cylindrospermopsis raciborskii (Cyanophyceae). J Phycol. 2016;52(5):854-62.

94. Yuan LL, Pollard AI. Classifying lakes to improve precision of nutrient–chlorophyll relationships. Freshwater Sci. 2014;33(4):1184-94.




DOI: http://dx.doi.org/10.24855/biosfera.v12i3.547

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"