COMPARATIVE META-ANALYSIS OF ALLOMETRIC MODELS OF FAST-GROWING HARDWOOD BIOMASS

В.А. Усольцев, И.С. Цепордей, А.А. Парамонов, С.В. Третьяков, С.В. Коптев, А.А. Карабан, И.В. Цветков, А.В. Давыдов, В.П. Часовских

Abstract


The potential depletion of fossil resources and the need to stabilize the climate require an increasing use of renewable energy sources, in particular, through the cultivation of fast-growing species such as willow (Salix L.), poplar (Populus L.) and alder (Alnus L.) on microrotation plantations. The actual biomass of trees determined on sample plots is rarely published in scientific papers and is usually presented as equations of the dependence of biomass on stem diameter and / or tree height. In this regard, as well because it is difficult to obtain empirical data on sample plots, the development of generic models of biomass based on meta-analysis as a way to generalize the results of independent studies has gained popularity. The purpose of the present study was (a) to construct a database of empirical data, as well as pseudo-data recovered by tabulating allometric models of Salix, Populus and Alnus biomass in known ranges of stem diameters according to available published sources; (b) to develop allometric meta-models of the aboveground biomass of the three aforenamed genera and to perform their comparative analysis; (c) to analyze biases in the assessments of the aboveground biomass of trees with meta-models vs. the original data; (d) to develop models for assessing the component composition of tree biomass of the three genera based on the values of aboveground biomass extracted from its meta-models. It is found that the generic meta-models explain about 99% of the variability of aboveground biomass and produce minor deviations (about 2% on average) from the initial values. Meta-models of biomass components associated with meta-models of aboveground biomass based on the recursive principle explain the variability of the mass of foliage, branches, stems and roots by 70-90, 87-95, 99.3-99.7 and 93-99% respectively. The proposed meta-models of aboveground biomass of trees can be applied in regions for which there are no allometric models of biomass. When a correction factor that takes into account the shape of the lower part of tree stem is introduced into the models, they can be used to assess the carbon depositing capacity of not only energy plantations, but also of managed forests using forest mensuration data.

Keywords


Salix L., Populus L., Alnus L., stem biomass, generic model, meta-analysis, regression analysis.


Как процитировать материал

References


1. Балашкевич ЮА. Зарастание бывших сельскохозяйственных земель древесной растительностью. Актуальные проблемы лесного комплекса. 2006;13:4-6.

2. Баранник ЛП. Экологическая пригодность древесных и кустарниковых пород для лесной рекультивации в Кузбассе. В кн.: Трофимов СС, ред. Восстановление техногенных ландшафтов Сибири. Новосибирск: Наука; 1977. С. 120-38.

3. Вайс АА. Форма нижней части стволов сосны обыкновенной (Pinus sylvestris L.) и возраст деревьев в условиях Западно-Сибирского подтаежно-лесостепного района. Вестн Алтайск гос аграрн ун-та. 2013;110(12):61-4.

4. Горобец АИ, Лихацкий ЮП. Влияние почвенно-гидрологических условий на продуктивность микроротационной плантации ивы корзиночной. Труды Санкт-Петербургского научно-исследовательского института лесного хозяйства. 2016;4:98-108.

5. Гульбе ЯИ. Динамика биологической продуктивности южнотаежных древостоев ольхи серой (на примере Ярославской области): Автореф. канд. дисс. М.; 2012.

6. Дрейпер Н, Смит Г. Прикладной регрессионный анализ. М.: Статистика; 1973.

7. Логинова ЛА. Продуктивность и энергетический потенциал ивовых ценозов на примере Воронежской области. Автореф. канд. дисс. Воронеж; 2010.

8. Марцинковский ЛА. О зависимости между диаметрами деревьев лиственницы на высоте пня и на высоте груди. В кн.: Лиственница: Сборник научных трудов. Красноярск: СТИ; 1964. С. 15-7.

9. Мякушко ВК, Вольвач ФВ, Плюта ПГ. Экология сосновых лесов. Киев: Урожай; 1989.

10. Парамонов АА, Усольцев ВА, Третьяков СВ и др. Биомасса деревьев ивы и ее аллометрические модели в условиях Архангельской области. Леса России и хозяйство в них. 2022;4:10-19.

11. Парамонов АА, Усольцев ВА, Третьяков СВ и др. Всеобщие модели фитомассы деревьев ивы (род Salix L.): мета-анализ. Лесной журнал. 2023. (В печати).

12. Перепечина ЮИ, Глушенков ОИ, Корсиков РС. Оценка лесов, расположенных на землях сельскохозяйственного назначения в Брянской области. Лесотехнический журнал. 2015;1:74-84.

13. Усольцев ВА. Вес кроны березы и осины в насаждениях Северного Казахстана. Вестник сельскохозяйственной науки Казахстана. 1972;4:77-80.

14. Усольцев ВА. Моделирование структуры и динамики фитомассы древостоев. Красноярск: Изд-во Красноярского ун-та; 1985. (http://elar.usfeu.ru/handle/123456789/3353).

15. Усольцев ВА. Рост и структура фитомассы древостоев. Новосибирск: Наука; 1988. (http://elar.usfeu.ru/handle/123456789/3352).

16. Усольцев ВА, Колчин КВ, Воронов МП. Фиктивные переменные и смещения всеобщих аллометрических моделей при локальной оценке фитомассы деревьев (на примере Picea L.). Эко-потенциал. 2017;17(1):22-39.

17. Усольцев ВА, Шубаири СОР, Дар ДА и др. Проблемы оценки биопродуктивности лесов в аспекте биогеографии: мета-анализ как способ обобщения результатов независимых исследований. Эко-потенциал. 2017; 20(4):10-34. (https://elar.usfeu.ru/bitstream/123456789/7016/1/ek-4-17_03.pdf).

18. Шитиков ВК, Розенберг ГС, Крамаренко СС, Якимов ВН. Современные подходы к статистическому анализу экспериментальных данных. В кн.: Розенберг ГС, Гелашвили ДБ, ред. Проблемы экологического эксперимента (планирование и анализ наблюдений). Тольятти: Ин-т экологии Волжского бассейна, 2008. С. 212-50.

1. Balashkevich YuA. [Overgrowing of former agricultural lands with woody vegetation]. Aktualnye Problemy Lesnogo Kompleksa. 2006;13:4-6. (In Russ.)

2. Barannik LP. [Ecological suitability of tree and shrub species for forest recultivation in Kuzbass]. In: Trofimov SS, ed. Vosstanovleniye Tekhnogennykh Landshaftov Sibiri. [Restoration of Technogenic Landscapes of Siberia]. Novosibirsk: Nauka; 1977. P. 120-38. (In Russ.)

3. Weiss AA. [The shape of the lower part of the trunks of the common pine (Pinus sylvestris L.) and the age of trees in the conditions of the West Siberian subtaiga-forest-steppe region]. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta. 2013;110(12):61-4. (In Russ.)

4. Gorobets AI, Likhatsky YuP. [The influence of soil-hydrological conditions on the productivity of micro-rotational plantation of basket willow]. Trudy Sankt-Peterburgskogo Nauchno-Issledovatelskogo Instituta Lesnogo Khozyaystva. 2016;4:98-108. (In Russ.)

5. Gulbe YaI. [Dynamics of Biological Productivity of Southern Taiga Stands of Gray Alder in Yaroslavl Region]. PhD Theses. Moscow; 2012. (In Russ.)

6. Draper N, Smith G. Applied Regression Analysis. New York: Wiley, 1966.

7. Loginova LA. [Productivity and Energy Potential of Willow Cenoses in Voronezh Region]. PhD Theses. Voronezh; 2010. (In Russ.)

8. Martsinkovsky LA. [On the relationship between the diameters of larch trees at the height of the stump and at the breast height]. In: Listvennitsa: Sbornik Nauchnykh Trudov. Krasnoyarsk: 1964. P. 15-7. (In Russ.)

9. Miakushko VK, Volvach FV, Pliuta PG. Ekologiya Sosnovykh Lesov. [Ecology of Pine Forests]. Kiev: Urozhay; 1989. (In Russ.)

10. Paramonov АА, Usoltsev VА, Tretyakov SV et al. [Willow tree biomass and its allometric models in the conditions of the Arkhangelsk Region]. Lesa Rossii i Khozyaystvo v Nikh. 2022;4:10-19. (In Russ.)

11. Paramonov АА, Usoltsev VА, Tretyakov SV et al. [Generic models of willow (genus Salix L.) tree biomass: A meta-analysis]. Lesnoy Zhurnal. 2023. In press. (In Russ.)

12. Perepechina YuI, Glushenkov OI, Korsakov RS. [Assessment of forests located on agricultural lands in Bryansk Region]. Lesotekhnicheskiy Zhurnal. 2015;1:74-84. (In Russ.)

13. Usoltsev VA. [Weight of birch and aspen crowns in forests of Northern Kazakhstan]. Vestnik Selskokhozyaystvennoy Nauki Kazakhstana. 1972;4:77-80. (In Russ.)

14. Usoltsev VA. Modelirovaniye Struktury i Dinamiki Fitomassy Drevostoyev. [Modeling of the Structure and Dynamics of Stand Biomass]. Krasnoyarsk: Krasnoyarsk University; 1985. (In Russ.)

15. Usoltsev VA. Rost i Struktura Fitomassy Drevostoyev. [Growth and Structure of Tree Stands Biomass]. Novosibirsk: Nauka; 1988. (In Russ.)

16. Usoltsev VA, Kolchin KV, Voronov MP. [Dummy variables and biases of generic allometric models in the local assessment of tree biomass (as exampleified with Picea L.)]. Eco-potential. 2017;17(1):22-39. (In Russ.)

17. Usoltsev VA, Shubairi SOR, Dar A et al. [Problems of forest bioproductivity assessment in the aspect of biogeography: a meta-analysis as a way to generalize the results of independent researches]. Eco-potential. 2017;20(4):10-34. (In Russ.)

18. Shitikov VK, Rosenberg GS, Kramarenko SS, Yakimov VN. [Modern approaches to statistical analysis of experimental data]. In: Rosenberg GS, Gelashvili DB, eds. Problemy Ekologicheskogo Eksperimenta (Planirovanie I Analiz Nabliudeniy). [Problems of Ecological Experiment (Planning and Analysis of Observations)]. Togliatti: Institute of Ecology of the Volga Basin; 2008 P. 212-50. (In Russ.)

19. Annighöfer P, Ameztegui A, Ammer Ch et al. Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur J For Res. 2016;135:313-29.

20. Anthelme F, Grossi J-L, Brun J-J, Didier L. Consequences of green alder expansion on vegetation changes and arthropod communities removal in the northern French Alps. For Ecol Manage. 2001;145;57-65.

21. Arevalo CBM, Volk TA, Bevilacqua E, Abrahamson L. Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass Bioenergy. 2007;31:1-12.

22. Arora G, Chaturvedi S, Kaushal R et al. Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turk J Agric For. 2014;38:550-60.

23. Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J Forest Res. 1972;2(1):49-53.

24. Berndes G, Hoogwijk M, van den Broek R. The contribution of biomass in the future global energy system: A review of 17 studies. Biomass Bioenergy. 2003; 25:1-28.

25. Binkley D, Lousier JD, Cromack KJr. Ecosystem effects of Sitka alder in a Douglas-fir plantation. Forest Sci. 1984;30(1):26-35.

26. Blujdea V, Pilli R, Dutca I et al. Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest Ecol Manag. 2012;264:172-84.

27. Campbell JS, Lieffers VJ, Pielou EC. Regression equations for estimating single tree biomass of trembling aspen: assessing their applicability to more than one population. Forest Ecol Manag. 1985;11:283-95.

28. Chave J, Condit R, Aguilar S et al. Error propagation and scaling for tropical forest biomass estimates. Phil Trans R Soc Lond B Biol Sci. 2004;359:409-20.

29. Chave J, Réjou-Méchain M, Búrquez A et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 2014;20:3177-90.

30. Chen J, Fang X, Wu A et al. Allometric equations for estimating biomass of natural shrubs and young trees of subtropical forests. New Forest. 2023 https://doi.org/10.1007/s11056-023-09963-z.

31. Chodak M, Sroka K, Woś B, Pietrzykowski M. Effect of green alder (Alnus viridis) and black alder (Alnus glutinosa) on chemical and microbial properties of sandy mine soils. Geoderma. 2019;356(3):113924.

32. Chojnacky DC, Heath LS, Jenkins JC. Updated generalized biomass equations for North American tree species. Forestry. 2014;87:129-51.

33. Christersson L, Sennerby-Forsse L, Zsuffa L. The role and significance of woody biomass plantations in Swedish agriculture. Forest Chron. 1993;69(6):687-93.

34. Cole TG, Ewel JJ. Allometric equations for four valuable tropical tree species. Forest Ecol Manag. 2006;229(1-3):351-60.

35. Conti G, Gorné L, Zeballos S et al. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. Glob Ecol Biogeogr. 2019;28(7):961-75.

36. Dahal B, Poudel KP, Renninger HJ et al. Aboveground biomass equations for black willow (Salix nigra Marsh.) and eastern cottonwood (Populus deltoides Bartr. ex Marsh.). Trees Forests People. 2022;7:e100195.

37. De-Miguel S, Mehtätalo L, Durkaya A. Developing generalized, calibratable, mixedeffects meta-models for large-scale biomass prediction. Can J Forest Res. 2014;44:648-56.

38. Enquist BJ, Niklas KJ. Invariant scaling relations across tree-dominated communities. Nature. 2001;410:655-60.

39. Feller MC. Generalized versus site-specific biomass regression equations for Pseudotsuga menziessi var. menziesii and Thuja plicata in Coastal British Columbia. Bioresour Technol. 1992;39:9-16.

40. Forrester DI, Tachauer IHH, Annighoefer P et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecol Manag. 2017;396:160-75.

41. Forslund RR. A geometrical tree volume based on the location of the centre of gravity of the bole. Can J Forest Res. 1982;6(4):441-7.

42. Freedman B, Duinker PN, Barclay H et al. Forest biomass and nutrient studies in central Nova Scotia. Maritimes Forest Research Centre, Can Forest Serv, Dep Environ Inf Rep M-X-134; 1982.

43. Fu LY, Zeng WS, Tang SZ et al. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales – A case study for Masson pine in Southern China. J Forest Sci. 2012;58(3):101-5.

44. Glass GV. Primary, secondary and meta-analysis of research. Educ Res.1976;5(10):3-8.

45. Helgerson OT, Cromack K, Stafford S et al. Equations for estimating aboveground components of young Douglas-fir and red alder in a coastal Oregon plantation. Can J Forest Res. 1988;18:1082-5.

46. Huss-Danell K, Lundniark J-E. Growth of nitrogen-fixing Alnus incana and Lupinus spp. for restoration of degenerated forest soil in northern Sweden. Stud Forest Suec. 1987;181:1-20.

47. Hytönen J, Saarsalmi A. Biomass production of coppiced grey alder and the effect of fertilization. Silva Fenn. 2015;49(1):1260.

48. Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA. National-scale biomass estimators for United States tree species. Forest Sci. 2003;49:12-35.

49. Kahle P, Hildebrand E, Baum C, Boelcke B. Long-term effects of short rotation forestry with willows and poplar on soil properties. Arch Agron Soil Sci. 2007;53(6):673-82.

50. Kauter D, Lewandowski I, Claupein W. Pappeln in kurzumtriebswirtschaft: eigenschaften und qualitätsmanagement bei der festbrennstoffbereitstellung – ein überblick. Pflanzenbauwissenschaften. 2001;5:64-74.

51. Keller A, Ankenbrand MJ, Bruelheide H et al. Ten (mostly) simple rules to future-proof trait data in ecological and evolutionary sciences. Methods Ecol Evol. 2022. doi: 10.1111/2041-210X.14033.

52. Ker MF. Tree biomass equations for ten major species in Cumberland County, Nova Scotia. Information Report, Maritimes Forest Research Centre, Canada. No. M-X-108;1980.

53. Kudyba S, ed. Big Data, Mining, and Analytics. Components of Strategic Decision Making. Boca Raton: CRC Press; 2014.

54. Kuznetsova T, Rosenvald K, Ostonen I et al. Survival of black alder (Alnus glutinosa L.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings in a reclaimed oil shale mining area. Ecol Eng. 2010; 36:495-502.

55. Luo Y, Wang X, Ouyang Z et al. A review of biomass equations for China's tree species. Earth Syst Sci Data. 2020;12(1):21-40.

56. Mleczek M, Rutkowski P, Rissmann I et al. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy. 2010;34:1410-18.

57. Muukkonen Р. Generalized allometric volume and biomass equations for some tree species in Europe. Eur J Forest Res. 2007;126:157-66.

58. Muukkonen P, Mäkipää R. Biomass equations for European trees: Addendum. Silva Fenn. 2006;40(4):763-73.

59. Nelson AS, Weiskittel AR, Wagner RG, Saunders MR. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy. 2014;68:215-27.

60. Niklas KJ. Plant allometry: the scaling of form and process. Chicago, IL. The University of Chicago Press; 1994.

61. Ounban W, Puangchit L, Diloksumpun S. Development of general biomass allometric equations for Tectona grandis Linn. f. and Eucalyptus camaldulensis Dehnh. plantations in Thailand. J Agric Nat Resour. 2016;50:48e53.

62. Pajtík J, Konôpka B, Šebeň V. Mathematical biomass models for young individuals of forest tree species in the region of the Western Carpathians. Zvolen: National Forest Centre; 2018.

63. Pastor J, Aber JD, Melillo JM. Biomass prediction using generalized allometric regressions for some Northeast tree species. For Ecol Manag. 1984;7:265-74.

64. Paul KI, Roxburgh SH, England JR et al. Development and testing of allometric equations for estimating aboveground biomass of mixed-species environmental plantings. Forest Ecol Manag. 2013;310:483-94.

65. Perala DA, Alban DH. Allometric biomass estimators for aspen-dominated ecosystems in the upper Great Lakes. USDA Forest Service. North Central Forest Experiment Station. Res. Paper NC-314; 1993.

66. Poorter H, Jagodzinski AM, Ruiz-Peinado R et al. How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 2015;208(3):736-49.

67. Ribe JH. Puckerbrush weight tables. Miscellaneous Report 152. Life Sciences and Agricultural Experiment Station; University of Maine. Orono, ME; 1973.

68. Rojas-García F, De Jong BHJ, Martínez-Zurimendí P, Paz-Pellat F. Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Ann For Sci. 2015;72:835-64.

69. Rytter L. Grey alder in forestry. A review. Norw J Agric Sci. Suppl. 1996;24:65-84.

70. Scarascia-Mugnozza G, Bauer GA, Persson H et al. Tree biomass, growth and nutrient pools. In: E.-D. Schulze, ed. Carbon and Nutrient Cycling in European Forest Ecosystems. Berlin; Heidelberg; New York: Springer-Verlag; 2000. P. 49-62.

71. Schneider FD, Fichtmueller D, Gossner MM et al. Towards an ecological trait‐data standard. Meth Ecol Evol. 2019;10:2006-19.

72. Shaiek O, Loustau D, Trichet P et al. Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Ann For Sci. 2011;68:443-52.

73. Singh T. Generalizing biomass equations for the boreal forest region of west-central Canada. Forest Ecol Manag. 1986;17:97-107.

74. Son Y, Hwang JW, Kim ZS et al. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresour Technol. 2001;78:251-5.

75. Ter-Mikaelian MT, Korzukhin MD. Biomass equations for sixty-five North American tree species. Forest Ecol Manage. 1997;97:1-24.

76. Tritton LM, Hornbeck JW. Biomass estimation for northeastern forests. Bull Ecol Soc Amer. 1981;62:106-7.

77. Uri V, Lõhmus K, Kiviste A, Aosaar J. The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry. 2009;82(1):61-74.

78. Usoltsev VA. Mensuration of forest biomass: Modernization of standard base of forest inventory. In: XIX World Congress Proceedings, IUFRO, Division 4. Canada, Montreal; 1990. P. 79-92.

79. Usoltsev VA. Single-Tree Biomass Data for Remote Sensing and Ground Measuring of Eurasian Forests: Digital Version. 2nd ed. Yekaterinburg: Ural State Forest Engineering University; Botanical Garden of Ural Branch of RAS; 2020. https://elar.usfeu.ru/handle/123456789/9647.

80. Van Bogaert R, Jonasson C, De Dapper M, Callaghan TV. Range expansion of thermophilic aspen (Populus tremula L.) in the Swedish Subarctic. Arct Antarct Alp Res. 2010;42:362-75.

81. Volk TA, Verwijst T, Tharakan PJ et al. Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ. 2004;2(8):411-8.

82. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122-6.

83. West GB, Brown JH, Enguist BJ. A general model for the structure and allometry of plant vascular system. Nature. 1999;400:664-7.

84. Wirth C, Schumacher J, Schulze E-D. Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 2004;24:121-39.

85. Xiang WH, Zhou J, Ouyang S et al. Species specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. Eur J Forest Res. 2016;135:963-79.

86. Young HE, Ribe JH, Wainwright K. Weight tables for tree and shrub species in Maine. Life Sciences & Agriculture Experiment Station Miscellaneous Report 230; 1980.

87. Zianis D, Mencuccini M. On simplifying allometric analyses of forest biomass. Forest Ecol Manag. 2004;187:311-32.




DOI: http://dx.doi.org/10.24855/biosfera.v15i1.789

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"