MEDICINAL MUSHROOM SCIENCE: CURRENT PROSPECTS, ADVANCES, EVIDENCES, AND CHALLENGES

C.П. Вассер

Abstract


The present review addresses the current prospects, advances, challenges, and future development of medicinal mushroom science in the 21st century. A total of about 130 medicinal functions attributed to medicinal mushrooms and fungi include antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, antihypercholesterolemic, antiviral, antibacterial, anti-parasitic, antifungal, detoxifying, hepatoprotective, and antidiabetic effects. Many, if not all, higher Basidiomycete mushrooms contain biologically active compounds in their fruit bodies, cultured mycelium, and culture broth. Special attention is paid to mushroom polysaccharides. Data onmushroom polysaccharides and different secondary metabolites are available for about 700 species of higher Hetero- and Homobasidiomycetes. Numerous bioactive polysaccharides or polysaccharide-protein complexes described from medicinal mushrooms are found to enhance the innate and cell-mediated immune responses and exhibit antitumor activities in animals and humans. Although the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of host immune responses by these mushroom compounds is now under spotlight. Several of mushroom-derived compounds have passed Phase I, II, and III clinical trials and are now used extensively and successfully in Asia to treat various cancers and other diseases. Special attention is paid to important unsolved problems in studies of medicinal mushrooms.

Keywords


medicinal mushrooms, antioxidant activities, polysaccharides, beta-glucans, antitumor activity, immunomodulating activity, secondary metabolites.


Как процитировать материал

References


Reshetnikov S.V., Wasser S.P., Tan K.K. Higher Basidiomycota as source of antitumor and immunostimulating polysaccharides. Int J Med Mushrooms. 2001;3:361-94.

Van Griensven L.J.L.D. Culinary-medicinal mushrooms: must action be taken. Int J Med Mushrooms. 2009;11:281-86.

Wasser S.P. Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1-16.

Chang S.T., Wasser S.P. The role of culinarymedicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;1:95-134.

Pöder R. The Ice man’s fungi: facts and mysteries. Int J Med Mushrooms. 2005;7:357-59.

Wasson R.G. Soma. Divine Mushroom of Immortality. Harcourt Brace Jovanovich, Inc. NY, 1968.

Hyde K.D., Bahkali A.H., Moslem M.A. Fungi – an unusual source for cosmetics. Fungal Diversity. 2010;43:1-9.

Lindequist U. The merit of medicinal mushrooms from a pharmaceutical point of view. Int J Med Mushrooms. 2013;15(6):517-23.

Hawksworth D.L. Mushrooms: the extent of the unexplored potential. Int J Med Mushrooms. 2001;3:333-40.

Hawksworth D.L. Global species number of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv. 2012;21:2425-33.

Kirk P.M., Cannon P.F., David J.C., Stalpers J.A. Ainsworth & Brisby’s Dictionary of the Fungi. 10th ed. CAB International, Wallingford, 2008.

Blackwell M. The fungi:1,2,3…5.1 million species? Am J Bot. 2011;98(3):426-38.

Bass D., Richards T.A. Three reasons to reevaluate fungal diversity ‘on Earth and in the ocean’. Fungal Bio Rev. 2011;25:159-64.

Hibbett D.S., Taylor J.W. Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol. 2013;11:129-33.

Anke T. Basidiomycetes: a source for new bioactive secondary metabolites. Prog Ind Microbiol. 1989;27:51-66.

Zaidman B.-Z., Yassin M., Mahajna J., Wasser S.P. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol. 2005;67:453-68.

De Silva D.D., Rapior S., Sudarman E., Stadler M., Xu J., Alias S.A., Hyde K.D. Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity. 2013;62:1-40.

Dai Y.-Ch., Yang Z.-L., Ui B.-K., Yu Ch.- J., Zhou L.-W. Species diversity and utilization of medicinal mushrooms and fungi in China (review). Int J Med Mushrooms. 2009;11:287-302.

Lo H.-Ch., Wasser S.P. Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms, 2011;13(5):401-26.

Didukh M.Y., Wasser S.P., Nevo E. Medicinal value of species of the family Agaricaceae Cohn (higher Basidiomycetes): Current stage of knowledge and future perspectives. Int J Med Mushrooms. 2003;5:133-52.

Chihara G., Hamuia J., Maeda Y.Y., Arai Y., Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumour activity especially lentinan from Lentinus edodes. Cancer Res. 1970;30:2776-81.

Zhang M., Cui S.W., Cheung P.C.K., Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation, structural characteristics and antitumor activity. Trends Food Sci Technol. 2007;18:4-19.

Zhang Y., Li Sh., Wang X., Zhang L., Cheung P.C.K. Advances in lentinan: isolation, structure, chain conformation and bioactivities. Food Hydrocolloids. 2011;25:1996-2006.

Zhang Y., Kong H., Fang Y., Nishinan K., Phillips G.O. Schizophyllan: a review on its structure, properties, bioactivities and recent development. Bioactive Carbohydrates and Dietary Fiber. 2013;1(1):53-71.

Lee D.H., Kim H.W. Innate immunity induced by fungal b-glucans via dectin-1 signaling pathway. Int J Med Mushrooms. 2014;16(1):1-16.

Barillot E., Calzone L., Hupe Ph., Vert J.- Ph., Zinovyev A. Computation System Biology of Cancer. CRC Press, Taylor & Francis Group. A Chapman & Hall Book; 2013.

Stewart B.W., Wild Ch.P., eds. World Cancer Report 2014. Lyon: International Agency for Research on Cancer; 2014.

Mizuno T. The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). Int J Med Mushrooms. 1999;1:9-29.

Hobbs Ch.R. Medicinal value of Lentinus edodes (Berk.) Sing. (Agaricomycetideae). A literature review. Int J Med Mushrooms. 2000;2:287-302.

Zhuang C., Wasser S.P. Medicinal value of culinary-medicinal Maitake mushroom Grifola frondosa (Dicks.:Fr.) S.F. Gray (Aphyllophoromycetideae). Review. Int J Med Mushrooms. 2004;6:287-313.

Boh B, Berivic M. Grifola frondosa (Diks.:Fr.) S.F. Gray (Maitake mushroom): medicinal properties, active compounds, and biotechnological cultivation. Int J Med Mushrooms. 2007;9:89-108.

Hobbs Ch.R. The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal split-gill fungus Schizophyllum commune Fr.:Fr. (Aphyllophoromycetideae). A literature review. Int J Med Mushrooms. 2005;7:127-40.

Lin Z.-B. Lingzhi. From Mystery to Science. Peking University Press. 2009.

Mahajna J., Dotan N., Zaidman B.-Z., Petrova R.D., Wasser S.P. Pharmacological values of medicinal mushrooms for prostate cancer therapy: the case of Ganoderma lucidum. Nutrition and Cancer. 2010;61:16-26.

Hobbs Ch.R. Medicinal value of Turkey Tail fungus Trametes versicolor (L.:Fr.) Pilát (Aphyllophoromycetideae). Int J Med Mushrooms. 2004;6:195-218.

Mizuno T., Zhuang, Abe K., Okamoto H., Kiho T., Ukai Sh., Leclerc S., Meijer L. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.:Fr.) Pil. (Aphyllophoromycetideae). Int J Med Mushrooms. 1999;1:301-316.

Balandykin M.E., Zmitrovich I.V. Review on Inonotus obliquus (Basidiomycota). Realm on medicinal applications and approaches on resources estimation. Int J Med Mushrooms. 2015;17(2):95- 104.

Hsieh P.-W., Wu J.-B., Wu Y.-Ch. Chemistry and biology of Phellinus linteus. BioMed. 2013;3:106-13.

Maruyama H., Ikekawa T. Immunomodulation and antitumor activity of a mushroom product, proflamin, isolated from Flammulina velutipes (W.Curt.:Fr.) Singer (Agaricomycetideae). Int J Med Mushrooms. 2007;9:109-22.

Matsuzawa T. Studies on antioxidant effects of culinary-medicinal bunashimeji mushroom Hypsizygus marmoreus (Peck) Bigel. (Agaricomycetidae). Int J Med Mushrooms. 2006;8(3):245-50.

Holliday H., Cleaver M. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int J Med Mushrooms. 2008;10:209-18.

Wasser S.P., Didukh M.Y., Amazonas M.A.L.A., Nevo E., Stamets P., Eira A.F. Is widely cultivated culinary-medicinal Royal Sun Agaricus (the Himematsutake mushroom) indeed Agaricus blazei Murrill? Int J Med Mushrooms. 2002;4:267-90.

Wasser S.P., Didukh M.Y., Amazonas M.A.L.A., Nevo E., Stamets P., Eira A.F. Is a widely cultivated culinary-medicinal Royal Sun Agaricus (Champignon do Brazil, or the Himematsutake mushroom) Agaricus brasiliensis S.Wasser et al. indeed a synonym of A. subrufescens Peck? Int J Med Mushrooms. 2005;7:507-11.

Lachter J., Yampolsky Y., Gafni-Schieber R., Wasser S.P. Yellow brain culinary-medicinal mushroom, Tremella mesenterica Ritz.: Fr. (Higher Basidiomycetes), is subjectively but not objectively effective for eradication of Helicobacter pylori; a prospective controlled trial. Int J Med Mushrooms. 2012;14 (1):55-63.

Yassin M., Wasser S.P., Mahajna J. Substances from the medicinal mushroom Daedalea gibbosa inhibit kinase activity of native and T315I mutated Bcr-Abl. Int J Oncol. 2008;32:1197-1204.

Petrova R.D., Mahajna J., Wasser S.P. et al. Marasmius oreades substances block NF-kappaB activity through interference with IKK activation pathway. Mol Biol Rep. 2009;36:737-44.

Rouhana-Toubi A., Wasser S.P., Fares F. Ethyl acetate extracts of submerged cultured mycelium of higher Basidiomycetes mushrooms inhibit human ovarian cancer cell growth. Int J Med Mushrooms. 2009;11: 29-37.

Dotan N., Wasser S.P., Mahajna J. The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integrative Cancer Therapies. 2011;10(2):148-59.

Ruimi N., Petrova R.D., Agbaria R., Sussan S., Wasser S.P., Reznick A.Z., Mahajna J. Inhibition of TNFα-induced iNOS expression in HSVtk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-κB- and MAPK-dependent mechanisms. Mol Biol Rep. 2010;37:3801-12.

Ruimi N., Rwashdeh H., Wasser S.P., Konkimalia B., Efferth T., Borgatti M., Gambari R., Mahajna J. Daedalea gibbosa substances inhibit LPS-induced expression of iNOS by suppression of NF-κB and MAPK activities in RAW 264.7 macrophage cells. Int J Mol Med. 2010;25:421-32.

Boh B. Ganoderma lucidum: a potential for biotechnological production of anti-cancer and immunomodulatory drugs. Recent Patents on Anticancer Drug Discovery. 2013;8:255-87.

Wasser S.P., Zmitrovich I.V., Didukh M.Y., Spirin W.A., Malysheva V.F. Morphological Traits of Ganoderma lucidum Complex Highlighting G. tsugae var. jannieae: The Current Generalization. Ruggell, Liechtenstein, A.R.A. Gantner Verlag K.G; 2006.

Moncalvo J.-M., Rivarden L. A nomenclatural study of the Ganodermataceae Donk. Synopsis Fungorum. 1997;11:1-114.

Zhao J.-D. The Ganodermataceae in China. Bibliotheca Mycologica Ser. 132. Berlin, Stuttgart: J. Cramer; 1989.

Cao Y., Wu Sh.-H., Dai Yu.-Ch. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Diversity. 2012;56:49-62.

Yang Z.L., Feng B. What is the Chinese “Lingzhi”? – a taxonomic mini-review. Mycology. 2013;4(1):1-4.

Chen Sh., Xu J., Liu Ch. et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nate Communications 2012;3:913/DOI:10.10/ncomms192338.

Kerrigan R. Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia. 2005;97:12-24.

Wasser S.P. Molecular identification of species of the genus Agaricus. Why should we look at morphology? Int J Med Mushrooms. 2007;9:85-8.

Buchalo A.S., Mykchaylova O., Lomberg M., Wasser S.P. Microstructures of vegetative mycelium of macromycetes in pure culture. Kiev: Alterpress; 2009.

McKenna D.J., Jones K., Hughes K., Humphrey Sh. Botanical Medicines. The Desk Reference for Major Herbal Supplements. 2nd edn. NY, London, Oxford: The Haworth Herbal Press; 2002.

Deng G., Lim H., Seidman A. et al. A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects. J Cancer Res Clin Oncol. 2009;135:1215-21.

Ishibashi K.I., Dogasaki C., Iriki T., Motoi M., Kurone Y.I., Miura N.N., Adachi L.S., Ohno N. Anti-β-glucan antibody in bovine sera. Int J Med Mushrooms. 2005;7:513.

Li JW.-H., Vederas J.C. Drug discovery and natural products: end of an era or an endless frontier. Science. 2009;325:161-5.

Ammerpohl O., Tiwari S., Kalthoff H. Target gene discovery for novel therapeutic agents in cancer treatment. Methods Mol Biol. 2010;576:42745.

Pollack A. Drug firms see fortune in treating cancer. Int Herald Tribune. 2009;15-6.

Endo A. The origin of the statins. Int Congress Series. 2004;1262:3-8.

Chen J., Seviour R. Medicinal importance of fungal β–(1-3), (1-6)-glucans. Mycol Res. 2007;111:635-52.

Ohno N. Structural diversity and physiological functions of β–glucans. Int J Med Mushrooms. 2005;7:167-73.

Miller H., Zhang J., Kuo Lee R., Patel G.B., Chen W. Intestinal M cells: the fallible sentinels? World J Gastroenterol. 2007;14:1477-86.

Pamer E.G. Immune responses to commensal and environmental microbes. Nat Immunol. 2007;8:1173-78.

Lehmann J., Kunze R. Water-soluble low molecular weight beta-glucans for modulating immunological responses in mammalian system. US Patent 2000; 6143883.

Tada R., Adachi Y., Ishibashi K-I., Tsubaki K., Ohno N. Binding capacity of a barley β-Dglucan to the b-glucan recognition molecule Dectin-1. J Agr Food Chem. 2008;56:1442-50.

Tiwari U., Cummins E. Factors influencing beta-glucan levels and molecular weight in cereal-based products. Cereal Chem. 2009;86:290-301.

Liu J.J., Gunn L., Hansen R., Yan J. Combined yeast-derived beta glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exper Mol Pathol. 2009;86:208-14.

Taylor P.R., Tsoni S.V., Willment J.A. et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31-8.

Harada T., Ohno N. Dectin-1 and GM- CSF on immunomodulating activities of fungal 6-branched 1,3-b-glucans. Int J Med Mushrooms. 2008;10:101-4.

Graham L.M., Brown G.D. The Dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine. 2009;48:148-55.

Falch B.H., Espevik T., Ryan L., Stokke B.T. The cytokine stimulating activity of (1-3)-betaD-glucans is dependent on the triple helix conformation. Carbohydr Res. 2000;329:587-96.

Park H.-G., Shim Y.Y., Choi S.-O., Park W.- M. New method development for nanoparticle extraction of water-soluble β-(1-3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. Agricultural and Food Chem. 2009; 57:2147-54.

Nitschke J., Modick H., Busch M., Wantoch R., Wantoch von Rekowski R., Albenbach H.- J., Mölleken H. A new colorimetric method to quantify β-1,3-1,6-glucans in comparison with total β-1,3-glucans in edible mushrooms. Food Chem. 2011;127:791-6.

Khamaisie H., Sussan S., Tal M., Najajren Y., Rurhardt M., Mahajna J. Oleic acid is the active component in the mushroom Daedalea gibbosa inhibiting Bcr-Abl kinase autophosphorylation activity. Anticancer Res. 2011;31:177-4.

Sharvit L.E., Wasser S.P., Fares F. The effect of culture liquid ethyl acetate mycelium extracts of medicinal mushrooms on the viability of human pancreatic cancer cells. Int J Med Mushrooms. 2012;14 (2):169-80.

Roberts R.M., Smith G.W., Bazer F.W. et al. Farm animal research in crisis. Science. 2009;324:468-9.

Jong Sh.-J. Protecting intellectual property assets of mushroom genetic resources for invention and innovation. Int J Med Mushrooms. 2005;7 (3):348-9.




DOI: http://dx.doi.org/10.24855/biosfera.v7i2.63

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"