МОДЕЛИ ДЛЯ ОЦЕНКИ ВОЗРАСТА ДЕРЕВЬЕВ И ДРЕВОСТОЕВ ЛЕСООБРАЗУЮЩИХ ВИДОВ ЕВРАЗИИ ПО МОРФОМЕТРИИ КРОН И ПОЛОГА, ДОСТУПНОЙ ДЛЯ ВОЗДУШНОГО ЛАЗЕРНОГО СКАНИРОВАНИЯ
Аннотация
Ключевые слова
Полный текст:
PDFКак процитировать материал
Литература
Лиепа ИЯ. Динамика древесных запасов: прогнозирование и экология. Рига: Зинатне; 1980.
Лупян EA, Балашов ИВ, Барталев СА и др. Лесные пожары на территории России: особенности пожароопасного сезона 2019 г. Современные проблемы дистанционного зондирования Земли из космоса. 2019;16(5):356-63.
Мауринь АМ, Лиепа ИЯ, Дрике АЯ, Поспелова ГЕ. Прогнозирование плодоношения древесных растений. Оптимизация использования и воспроизводства лесов СССР. М.: Наука ;1977. С. 50-3.
Никитин КЕ. Лес и математика. Лесное хозяйство. 1965;5:25-9.
Розенберг ГС, Долотовский ИМ. Еще раз о показателях силы влияния. Биологические науки. 1988;9: 105-10.
Токарева ОС, Алшаиби АДА, Пасько ОА. Оценка восстановительной динамики растительного покрова лесных гарей с использованием данных со спутников Landsat. Известия Томского политехнического университета. Инжиниринг георесурсов. 2021;332(7):191-9.
Усольцев ВА. Фитомасса модельных деревьев для дистанционной и наземной таксации лесов Евразии. Электронная база данных. 3-е дополненное издание. Екатеринбург: Ботанический сад УрО РАН, Уральский государственный лесотехнический университет; 2023. https://elar.usfeu.ru/handle/123456789/12451.
Усольцев ВА. Биомасса и первичная продукция лесов Евразии. Электронная база данных. 4-е дополненное издание. Екатеринбург: Ботанический сад УрО РАН, Уральский государственный лесотехнический университет; 2023. https://elar.usfeu.ru/handle/123456789/12452.
Цепордей ИС. Биологическая продуктивность лесообразующих видов в климатическом контексте Евразии (под ред. проф. В.А. Усольцева). Екатеринбург: Изд-во УМЦ УПИ; 2023. https://elar.usfeu.ru/handle/123456789/12450
Liyepa IYa. Dinamika Drevesnykh Zapasov: Prognozirovaniye i Ekologiya [Dynamics of Wood Stocks: Forecasting and Ecology]. Riga: Zinatne; 1980. (In Russ.)
Lupyan YeA, Balashov IV, Bartalev SA et al. [Forest fires in Russia: features of the fire season 2019]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2019;16(5):356-63. (In Russ.)
Maurin’ AM, Liyepa IYa, Drike AYa, Pospelova GE. [Forecasting the fruiting of woody plants]. In: Optimizatsiya Ispolzovaniya i Vosproizvodstva Lesov v SSSR [Optimization of the Use and Reproduction of Forests of the USSR]. Moscow: Nauka; 1977. P. 50-3. (In Russ.).
Nikitin KE. Les i Matematika [Forest and Mathematics]. Lesnoye Khoziyjstvo. 1965;5:25-9. (In Russ.).
Rosenberg GS, Dolotovsky IM. [Once again on the indicators of the power of influence]. Biologicheskiye Nauki. 1988;9:105-10. (In Russ.).
Tokareva OS, Alshaibi ADA, Pas’ko O A. [Assessment of the regenerative dynamics of the vegetation cover of forest burns using data from Landsat satellites]. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2021;332(7):191-9. (In Russ.)
Usoltsev VA. Fitomassa Model’nykh Dereviyev dlya Distantsionnoy i Nazemnoy Taksatsii Lesov Yevrazii [Phytomass of Model Trees for Remote and Terrestrial Forest Taxation in Eurasia. An Electronic Database]. Yekaterinburg; 2023a. (In Russ.). Available at: https://elar.usfeu.ru/handle/123456789/12451
Usoltsev VA. Biomassa i Pervichnaya Produktsiya Lesov Yevrazii [Biomass and Primary Production of Eurasian Forests. An electronic database. Yekaterinburg: 2023. (In Russ.). Available at: https://elar.usfeu.ru/handle/123456789/12452
Tsepordey IS. Biologicheskaya Produktivnost’ Lesoobrazuyushchikh Vidov v Klimaticheskom Kontekste Yevrazii [Biological Productivity of Forest-Forming Species in the Climatic Context of Eurasia]. Yekaterinburg: Izdatelsrvo UMTs UPI; 2023. (In Russ.). Available at: https://elar.usfeu.ru/handle/123456789/12450
Aguilar FJ, Rodríguez FA, Aguilar MA et al. Forestry applications of space-borne LiDAR sensors: A worldwide bibliometric analysis. Sensors. 2024;24:1106. https://doi.org/10.3390/s24041106
Alcaras E, Costantino D, Guastaferro F et al. Normalized Burn Ratio Plus (NBR+): A New index for Sentinel-2 Imagery. Remote Sens. 2022;14:1727.
Amiro BD, Chen JM. Forest-fire-scars aging using SPOT-VEGETATION for Canadian ecoregions. Can J Forest Res. 2003;33:1116-25.
Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J Forest Res. 1972;2:49-53.
Besnard S, Koirala S, Santoro M et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst Sci Data. 2021;13:4881-96.
Bradford JB, Birdsey RA, Joyce LA et al. Tree age, disturbance history, and carbon stocks and fluxes in subalpine rocky mountain forests. Glob Chang Biol. 2010;14:2882-97.
Chapin FS III, Matson PA, Vitousek PM. Principles of Terrestrial Ecosystem Ecology (2nd edition). New York: Springer Science+Business Media; 2011.
Chen J, Chen W, Liu J et al. Annual carbon balance of Canada’s forests during 1895–1996. Glob Biogeochem Cycles. 2000;14:839-49.
Chen JM, Ju W, Cihlar J et al. Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus B Chem Phys Meteorol. 2003;55:622-41.
Chen D, Loboda TV, Krylov A et al. Mapping stand age dynamics of the Siberian larch forests from recent Landsat observations. Remote Sens Environ. 2016;187:320-31.
Dai M, Zhou T, Yang LL et al. Spatial pattern of forest ages in China retrieved from national-level inventory and remote sensing imageries. Geogr Res. 2011;30(1);172-84.
Diao J, Feng T, Li M et al. Use of vegetation change tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China. Ann For Sci. 2020;77(2):27.
Dubayah R, Blair JB, Goetz S et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci Remote Sens. 2020;1:100002.
Farid A, Goodrich DC, Sorooshian S. Using airborne lidar to discern age classes of cottonwood trees in a riparian area. West J Appl For. 2006;21(3):149-58.
Goulden ML, Mcmillan AMS, Winston GC et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Change Biol. 2011;17(2):855-1.
Graves SJ, Marconi S, Stewart D et al. Data science competition for cross-site individual tree species identification from airborne remote sensing data. PeerJ. 2023;11:e16578. doi: 10.7717/peerj.16578
He LM, Chen JM, Pan YD et al. Relationships between net primary productivity and forest stand age in U.S. forests. Glob Biogeochem Cycles. 2012;26(3):GB3009.
Huang Z, Li X, Du H et al. An algorithm of forest age estimation based on the forest disturbance and recovery detection. IEEE Trans Geosci Remote Sens. 2023;61:4409018.
Kalliovirta J, Tokola T. Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fenn. 2005;39:227-48.
Li P, Shang R, Chen JM et al. Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples. Biogeosciences. 2024;21:625-39.
Li P, Li H, Si B et al. Mapping planted forest age using LandTrendr algorithm and Landsat 5–8 on the Loess Plateau, China. Agric For Meteorol. 2024;344:109795.
Lin X, Shang R, Chen JM et al. High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agric For Meteorol. 2023;339:109592.
Liu X, Su Y, Hu T et al. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data. Remote Sens Environ. 2022;269:112844.
Liu Y, Holm JA, Koven CD et al. Large divergence of projected high latitude vegetation composition and productivity due to functional trait uncertainty. Earth's Future. 2024;12:e2024EF004563.
Luyssaert S, Schulze E.D., Börner A et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213-5.
Maltamo M, Kinnunen H, Kangas A et al. Predicting stand age in managed forests using National Forest Inventory field data and airborne laser scanning. Forest Ecosyst. 2020;7:44.
Maltman JC, Hermosilla T, Wulder MA et al. Estimating and mapping forest age across Canada’s forested ecosystems. Remote Sens Environ. 2023;90:113529.
Pan YD, Chen JM, Birdsey R et al. Age structure and disturbance legacy of North American forests. Biogeosciences. 2011; 8:715-32.
Panagiotidis D, Abdollahnejad A, Surový P et al. Determining tree height and crown diameter from high-resolution UAV imagery. Int J Remote Sens. 2017;38(8-10):2392-410.
Poorter L, Bongers F, Aide TM et al. Biomass resilience of neotropical secondary forests. Nature. 2016;530:211-4.
Racine EB, Coops NC, St-Onge et al. Estimating forest stand age from LiDAR-derived predictors and nearest neighbor imputation. Forest Sci. 2014;60:128–36.
Schumacher J, Hauglin M, Astrup R et al. Mapping forest age using national forest inventory, airborne laser scanning, and Sentinel-2 data. Forest Ecosyst. 2020;7(1):60.
Smolina A, Illarionova S, Shadrin D et al. Forest age estimation in northern Arkhangelsk region based on machine learning pipeline on Sentinel‑2 and auxiliary data. Sci Rep. 2023;13: 22167.
Sun C, Cao S, Sanchez-Azofeifa GA. Mapping tropical dry forest age using airborne waveform LiDAR and hyperspectral metrics. Int J Appl Earth Observ Geoinf. 2019;83:101908.
Umemi K, Inoue A. A model for predicting mean diameter at breast height from mean tree height and stand density. J Forest Res. 2024;29(3):186-95.
Van Laar A, Akca A. Forest Mensuration. Göttingen: Cuvillier Verlag; 1997.
Vastaranta M, Niemi M, Wulder MA et al. Forest stand age classification using time series of photogrammetrically derived digital surface models. Scand J Forest Res. 2016;31:194-205.
Vega C, St-Onge B. Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models. Remote Sens Environ. 2008;112(4):1784-94.
Xia J, Xia X, Chen Y et al. Reconstructing long-term forest age of China by combining forest inventories, satellite-based forest age and forest cover data sets. J Geophys Res Biogeosci. 2023;128:e2023JG007492.
Yang X, Liu Y, Wu Z et al. Forest age mapping based on multiple-resource remote sensing data. Environ Monit Assess. 2020;192:734.
Yu G, Chen Z, Piao S et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910-5.
Yu Z, Zhao H, Liu S et al. Mapping forest type and age in China’s plantations. Sci Total Environ. 2020;744:140790.
Zhang C, Ju W, Chen JM et al. Mapping forest stand age in China using remotely sensed forest height and observation data. J Geophys Res Biogeosci. 2014;119:1163-79.
Zhang Y, Yao Y, Wang X et al. Mapping spatial distribution of forest age in China. Earth Space Sci. 2017;4:108-16.
DOI: http://dx.doi.org/10.24855/biosfera.v16i4.959
© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"