MODELS FOR ESTIMATING THE AGE OF TREES AND STANDS OF FOREST-FORMING SPECIES OF EURASIA BASED ON CROWN AND CANOPY MORPHOMETRY AVAILABLE FOR AERIAL LASER SCANNING

В.А. Усольцев

Abstract


The age of a forest stand is an important indicator reflecting succession dynamics of forest ecosystem after external influences and damages. It plays a key role in forestry activities and in preserving of biodiversity. Forest age influences the long-term dynamics of carbon balance, the potential for carbon sequestration and prospects for achieving carbon neutrality. Modern remote sensing methods make it possible to estimate the age of both an individual stand and stand aggregates over large areas. Lidar technologies using drones are promising for local estimates of the age of trees and stands based on their morphometric indicators; however, such studies are quite rare. The purpose of the present study was to develop models of the dependence of the age of trees and stands on their basic morphometric indicators available for lidar scanning. The study was based on two original databases, from which measurement data related to 5320 model trees and 5817 stands of 13 forest-forming genera of Eurasia were taken. In allometric models of the dependence of the age of a tree on its height and crown diameter, determination coefficients range from 0.60 to 0.66. The contributions of tree height and crown diameter to the variability of tree age are 71% and 29% respectively. In allometric models of the dependence of the age of stands on their height and density, determination coefficients range from 0.45 to 0.89. The contributions of the average height of a stand and its density to the variability of age are 54% and 46% respectively. The proposed models can be used for estimating the age of trees and stands of forest-forming genera of Eurasia using airborne lidar technologies, including the use of drones.

Keywords


forest-forming genera of Eurasia, height of trees and stands, morphometric indicators, allometric models.


Как процитировать материал

References


Лиепа ИЯ. Динамика древесных запасов: прогнозирование и экология. Рига: Зинатне; 1980.

Лупян EA, Балашов ИВ, Барталев СА и др. Лесные пожары на территории России: особенности пожароопасного сезона 2019 г. Современные проблемы дистанционного зондирования Земли из космоса. 2019;16(5):356-63.

Мауринь АМ, Лиепа ИЯ, Дрике АЯ, Поспелова ГЕ. Прогнозирование плодоношения древесных растений. Оптимизация использования и воспроизводства лесов СССР. М.: Наука ;1977. С. 50-3.

Никитин КЕ. Лес и математика. Лесное хозяйство. 1965;5:25-9.

Розенберг ГС, Долотовский ИМ. Еще раз о показателях силы влияния. Биологические науки. 1988;9: 105-10.

Токарева ОС, Алшаиби АДА, Пасько ОА. Оценка восстановительной динамики растительного покрова лесных гарей с использованием данных со спутников Landsat. Известия Томского политехнического университета. Инжиниринг георесурсов. 2021;332(7):191-9.

Усольцев ВА. Фитомасса модельных деревьев для дистанционной и наземной таксации лесов Евразии. Электронная база данных. 3-е дополненное издание. Екатеринбург: Ботанический сад УрО РАН, Уральский государственный лесотехнический университет; 2023. https://elar.usfeu.ru/handle/123456789/12451.

Усольцев ВА. Биомасса и первичная продукция лесов Евразии. Электронная база данных. 4-е дополненное издание. Екатеринбург: Ботанический сад УрО РАН, Уральский государственный лесотехнический университет; 2023. https://elar.usfeu.ru/handle/123456789/12452.

Цепордей ИС. Биологическая продуктивность лесообразующих видов в климатическом контексте Евразии (под ред. проф. В.А. Усольцева). Екатеринбург: Изд-во УМЦ УПИ; 2023. https://elar.usfeu.ru/handle/123456789/12450

Liyepa IYa. Dinamika Drevesnykh Zapasov: Prognozirovaniye i Ekologiya [Dynamics of Wood Stocks: Forecasting and Ecology]. Riga: Zinatne; 1980. (In Russ.)

Lupyan YeA, Balashov IV, Bartalev SA et al. [Forest fires in Russia: features of the fire season 2019]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2019;16(5):356-63. (In Russ.)

Maurin’ AM, Liyepa IYa, Drike AYa, Pospelova GE. [Forecasting the fruiting of woody plants]. In: Optimizatsiya Ispolzovaniya i Vosproizvodstva Lesov v SSSR [Optimization of the Use and Reproduction of Forests of the USSR]. Moscow: Nauka; 1977. P. 50-3. (In Russ.).

Nikitin KE. Les i Matematika [Forest and Mathematics]. Lesnoye Khoziyjstvo. 1965;5:25-9. (In Russ.).

Rosenberg GS, Dolotovsky IM. [Once again on the indicators of the power of influence]. Biologicheskiye Nauki. 1988;9:105-10. (In Russ.).

Tokareva OS, Alshaibi ADA, Pas’ko O A. [Assessment of the regenerative dynamics of the vegetation cover of forest burns using data from Landsat satellites]. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2021;332(7):191-9. (In Russ.)

Usoltsev VA. Fitomassa Model’nykh Dereviyev dlya Distantsionnoy i Nazemnoy Taksatsii Lesov Yevrazii [Phytomass of Model Trees for Remote and Terrestrial Forest Taxation in Eurasia. An Electronic Database]. Yekaterinburg; 2023a. (In Russ.). Available at: https://elar.usfeu.ru/handle/123456789/12451

Usoltsev VA. Biomassa i Pervichnaya Produktsiya Lesov Yevrazii [Biomass and Primary Production of Eurasian Forests. An electronic database. Yekaterinburg: 2023. (In Russ.). Available at: https://elar.usfeu.ru/handle/123456789/12452

Tsepordey IS. Biologicheskaya Produktivnost’ Lesoobrazuyushchikh Vidov v Klimaticheskom Kontekste Yevrazii [Biological Productivity of Forest-Forming Species in the Climatic Context of Eurasia]. Yekaterinburg: Izdatelsrvo UMTs UPI; 2023. (In Russ.). Available at: https://elar.usfeu.ru/handle/123456789/12450

Aguilar FJ, Rodríguez FA, Aguilar MA et al. Forestry applications of space-borne LiDAR sensors: A worldwide bibliometric analysis. Sensors. 2024;24:1106. https://doi.org/10.3390/s24041106

Alcaras E, Costantino D, Guastaferro F et al. Normalized Burn Ratio Plus (NBR+): A New index for Sentinel-2 Imagery. Remote Sens. 2022;14:1727.

Amiro BD, Chen JM. Forest-fire-scars aging using SPOT-VEGETATION for Canadian ecoregions. Can J Forest Res. 2003;33:1116-25.

Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J Forest Res. 1972;2:49-53.

Besnard S, Koirala S, Santoro M et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst Sci Data. 2021;13:4881-96.

Bradford JB, Birdsey RA, Joyce LA et al. Tree age, disturbance history, and carbon stocks and fluxes in subalpine rocky mountain forests. Glob Chang Biol. 2010;14:2882-97.

Chapin FS III, Matson PA, Vitousek PM. Principles of Terrestrial Ecosystem Ecology (2nd edition). New York: Springer Science+Business Media; 2011.

Chen J, Chen W, Liu J et al. Annual carbon balance of Canada’s forests during 1895–1996. Glob Biogeochem Cycles. 2000;14:839-49.

Chen JM, Ju W, Cihlar J et al. Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus B Chem Phys Meteorol. 2003;55:622-41.

Chen D, Loboda TV, Krylov A et al. Mapping stand age dynamics of the Siberian larch forests from recent Landsat observations. Remote Sens Environ. 2016;187:320-31.

Dai M, Zhou T, Yang LL et al. Spatial pattern of forest ages in China retrieved from national-level inventory and remote sensing imageries. Geogr Res. 2011;30(1);172-84.

Diao J, Feng T, Li M et al. Use of vegetation change tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China. Ann For Sci. 2020;77(2):27.

Dubayah R, Blair JB, Goetz S et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci Remote Sens. 2020;1:100002.

Farid A, Goodrich DC, Sorooshian S. Using airborne lidar to discern age classes of cottonwood trees in a riparian area. West J Appl For. 2006;21(3):149-58.

Goulden ML, Mcmillan AMS, Winston GC et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Change Biol. 2011;17(2):855-1.

Graves SJ, Marconi S, Stewart D et al. Data science competition for cross-site individual tree species identification from airborne remote sensing data. PeerJ. 2023;11:e16578. doi: 10.7717/peerj.16578

He LM, Chen JM, Pan YD et al. Relationships between net primary productivity and forest stand age in U.S. forests. Glob Biogeochem Cycles. 2012;26(3):GB3009.

Huang Z, Li X, Du H et al. An algorithm of forest age estimation based on the forest disturbance and recovery detection. IEEE Trans Geosci Remote Sens. 2023;61:4409018.

Kalliovirta J, Tokola T. Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fenn. 2005;39:227-48.

Li P, Shang R, Chen JM et al. Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples. Biogeosciences. 2024;21:625-39.

Li P, Li H, Si B et al. Mapping planted forest age using LandTrendr algorithm and Landsat 5–8 on the Loess Plateau, China. Agric For Meteorol. 2024;344:109795.

Lin X, Shang R, Chen JM et al. High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agric For Meteorol. 2023;339:109592.

Liu X, Su Y, Hu T et al. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data. Remote Sens Environ. 2022;269:112844.

Liu Y, Holm JA, Koven CD et al. Large divergence of projected high latitude vegetation composition and productivity due to functional trait uncertainty. Earth's Future. 2024;12:e2024EF004563.

Luyssaert S, Schulze E.D., Börner A et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213-5.

Maltamo M, Kinnunen H, Kangas A et al. Predicting stand age in managed forests using National Forest Inventory field data and airborne laser scanning. Forest Ecosyst. 2020;7:44.

Maltman JC, Hermosilla T, Wulder MA et al. Estimating and mapping forest age across Canada’s forested ecosystems. Remote Sens Environ. 2023;90:113529.

Pan YD, Chen JM, Birdsey R et al. Age structure and disturbance legacy of North American forests. Biogeosciences. 2011; 8:715-32.

Panagiotidis D, Abdollahnejad A, Surový P et al. Determining tree height and crown diameter from high-resolution UAV imagery. Int J Remote Sens. 2017;38(8-10):2392-410.

Poorter L, Bongers F, Aide TM et al. Biomass resilience of neotropical secondary forests. Nature. 2016;530:211-4.

Racine EB, Coops NC, St-Onge et al. Estimating forest stand age from LiDAR-derived predictors and nearest neighbor imputation. Forest Sci. 2014;60:128–36.

Schumacher J, Hauglin M, Astrup R et al. Mapping forest age using national forest inventory, airborne laser scanning, and Sentinel-2 data. Forest Ecosyst. 2020;7(1):60.

Smolina A, Illarionova S, Shadrin D et al. Forest age estimation in northern Arkhangelsk region based on machine learning pipeline on Sentinel‑2 and auxiliary data. Sci Rep. 2023;13: 22167.

Sun C, Cao S, Sanchez-Azofeifa GA. Mapping tropical dry forest age using airborne waveform LiDAR and hyperspectral metrics. Int J Appl Earth Observ Geoinf. 2019;83:101908.

Umemi K, Inoue A. A model for predicting mean diameter at breast height from mean tree height and stand density. J Forest Res. 2024;29(3):186-95.

Van Laar A, Akca A. Forest Mensuration. Göttingen: Cuvillier Verlag; 1997.

Vastaranta M, Niemi M, Wulder MA et al. Forest stand age classification using time series of photogrammetrically derived digital surface models. Scand J Forest Res. 2016;31:194-205.

Vega C, St-Onge B. Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models. Remote Sens Environ. 2008;112(4):1784-94.

Xia J, Xia X, Chen Y et al. Reconstructing long-term forest age of China by combining forest inventories, satellite-based forest age and forest cover data sets. J Geophys Res Biogeosci. 2023;128:e2023JG007492.

Yang X, Liu Y, Wu Z et al. Forest age mapping based on multiple-resource remote sensing data. Environ Monit Assess. 2020;192:734.

Yu G, Chen Z, Piao S et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910-5.

Yu Z, Zhao H, Liu S et al. Mapping forest type and age in China’s plantations. Sci Total Environ. 2020;744:140790.

Zhang C, Ju W, Chen JM et al. Mapping forest stand age in China using remotely sensed forest height and observation data. J Geophys Res Biogeosci. 2014;119:1163-79.

Zhang Y, Yao Y, Wang X et al. Mapping spatial distribution of forest age in China. Earth Space Sci. 2017;4:108-16.




DOI: http://dx.doi.org/10.24855/biosfera.v16i4.959

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"