PATTERNS OF NATURAL FOREST ECOSYSTEM REGENERATION IN ABANDONED FARMLAND (THE CASE OF THE SOUTHERN AGRO-CLIMATIC DISTRICT OF KARELIA)

Е.В. Мошкина, М.В. Медведева, А.В. Туюнен, А.Ю. Карпечко, Н.В. Геникова, И.А. Дубровина, А.В. Мамай, В.А. Сидорова, О.В. Толстогузов, Л.М. Кулакова

Abstract


Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia The chronological succession series of forest communities regenerating in abandoned farmland is described. A period of 110 years since abandonment was studied based on reference stands aged 20-65-110 years. The typical process in the settings studied is the regeneration of coniferous stands with a gradual reduction in the share of deciduous stands as they are approaching their limit. These changes are accompanied by shifts in soil characteristics. Changes in microbial biocenoses are more apparent in the upper soil levels (0-20 cm). Transition from arable to fallow soil conditions results in organic matter accumulation at the level from 0 to 10 cm, which is associated with increasing respiratory activity and microbial carbon content. At the level of 10 to 20 cm, microbial carbon content is highest in the arable soil. The soil contents of microorganisms generally increases in the series from 110-years to 65-years old spruce forests and further on to 20-years old birch forest, grassland and arable land. A century after a land has been abandoned plant communities developed there are hardly discernible from native ones. Only indirect signs are indicative of the former. One of the signs is that the tree stands developing in abandoned farmland are far more productive than the stands that grow prior to cultivation. The results of the present study may be useful for diagnostics of soils at different stages of restoration after anthropogenic transformation and for environmental monitoring.

Keywords


succession, chronological series, communities, soils

References


1. Агроэкологическое состояние и перспективы использования земель России, выбывших из активного сельскохозяйственного оборота. М.: Росинформагро-тех; 2008.

2. Ананьева НД, Благодатская ЕВ, Демкина ТС. Оценка устойчивости микробных комплексов к природным и антропогенным воздействиям. Почвоведение. 2002;(5):580-7.

3. Ананьева НД, Стольникова ЕВ, Сусьян ЕА, Ходжаева АК. Грибная и бактериальная микробная биомасса (селективное ингибирование) и продуцирование CO2 и N2O дерново-подзолистыми почвами постагрогенных биогеоценозов. Почвоведение. 2010;(11):1387-93.

4. Базыкина ГС, Скворцова ЕБ, Тонконогов ВД, Хохлов СФ. Влияние составляющих водного баланса и температурного режима на свойства постагрогенных дерново-подзолистых почв Подмосковья. Почвоведение. 2007;(6):685-97.

5. Владыченский АС, Телеснина ВМ. Сравнительная характеристика постагрогенных почв южной тайги в разных литологических условиях. Вестник МГУ Сер. 17. Почвоведение. 2007;(4):3-10.

6. Владыченский АС, Телеснина ВМ, Чалая ТА. Влияние растительного опада на химические свойства и биологическую активность постагрогенных почв южной тайги. Вестник МГУ. Сер. 17. Почвоведение. 2012;(1):3-10.

7. Ермолаев АМ, Ширшова ЛТ. Влияние погодных условий и режима использования сеяного луга на продуктивность травостоя и свойства серых лесных почв. Почвоведение. 2000;(12):1501-8.

8. Залесов СВ, Магасумова АГ, Юровских ЕВ. Зарастание бывших сельскохозяйственных угодий в СлободоТуринском районе Свердловской области. Леса России и хозяйство в них. 2010;(3):14-23.

9. Кечайкина ИО, Рюмин АГ, Чуков СН. Постагрогенная трансформация органического вещества дерновоподзолистых почв. Почвоведение. 2011;(10):1178-93.

10. Кузнецова ИВ, Тихонравoва ПИ, Бондарев АГ. Изменение свойств залежных серых лесных почв. Почвоведение. 2009;(9):1442-50.

11. Литвинович АВ, Павлова ОЮ, Чернов ДВ, Фомина АС. Изменение гумусного состояния дерновоподзолистой песчаной почвы при окультуривании и последующем исключении из хозяйственного оборота. Агрохимия. 2004;(8):13-9.

12. Литвинович АВ, Павлова ОЮ, Дричко ВФ, Чернов ДВ, Фомина АС Деградация кислотно-основных свойств окультуренной дерново-подзолистой песчаной почвы в зависимости от срока нахождения в залежи. Почвоведение. 2005;(10):1232-9.

13. Люри ДИ, Горячкин СВ, Караева НА, Денисенко ЕА, Нефедова ТГ. Динамика сельскохозяйственных земель в XX веке и постагрогенное восстановление растительности и почв. М.: ГЕОС; 2010.

14. Мостовая АС, Курганова ИН, Лопес де Гереню ВО, Хохлова ОС, Русаков АВ, Шаповалов АС. Изменение микробиологической активности серых лесных почв в процессе естественного лесовосстановления. Вестник Воронежского гос. университета. Сер. Химия, биология, фармация. 2015;(2):64-72.

15. Панкова ЕИ, Новикова АФ. Деградационные почвенные процессы на сельскохозяйственных землях России. Почвоведение. 2000;(3):366-79.

16. Перепечина ЮИ, Глушенков ОИ, Корсиков РС. Оценка лесов, расположенных на землях сельскохозяйственного назначения в Брянской области. Лесотехнический журнал. 2015;1(17):74-84.

17. Рыжова ИМ, Ерохова АА, Подвезенная МА. Изменение запасов углерода в постагрогенных экосистемах в результате естественного восстановления лесов в Костромской области. Лесоведение. 2015;(4):307-17.

18. Сукачев ВН, Зонн СВ. Методические указания к изучению типов леса. М.: АН СССР; 1961.

19. Уткин АИ, Гульбе ТА, Гульбе ЯИ, Ермолова ЛС. О наступлении лесной растительности на сельскохозяйственные земли в Верхнем Поволжье. Лесоведение. 2002;(5):44-52.

1. Agroekologicheskoye Sostoyaniye i Perspektivy Ispolzovaniya Zemel Rossii, Vybyvshikh iz Aktivnogo Selskokhozyaystvennogo Oborota. Moscow: Rosinformagro-Tekh; 2008. (In Russ.)

2. Ananyeva ND, Blagodatskaya EV, Demkina TS Estimating the resistance of soil microbial complexes to natural and anthropogenic impacts. Pochvovedeniye. 2002;(5):580-7. (In Russ.)

3. Ananyeva ND, Stolnikova EV, Susyan EA, Khodzhayeva AK. The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by sod-podzol soils of postagrogenic biogeocenoses. Pochvovedeniye. 2010;(11):1387-93. (In Russ.)

4. Bazykina GS, Skvortsova EB, Tonkonogov VD, Khokhlov SF. Water budget items and temperature regime of postagrogenic sod-podzol soils of Moscow region and their effect on soil properties. Pochvovedeniye. 2007;(6):68597. (In Russ.)

5. Vladychenskiy AS, Telesnina VM. Comparative characteristic of south taiga postagrogenic soil humus indexes for different litology conditions. Vestnik MGU Ser 17 Pochvovedeniye. 2007;(4):3-10. (In Russ.)

6. Vladychenskiy AS, Telesnina VM, Chalaya TA. Plant leaf fall influence on biological activity of south taiga post agrogenic soils. Vestnik MGU Ser 17 Pochvovedeniye. 2012;(1):3-10. (In Russ.)

7. Yermolayev AM, Shirshova LT. Influence of climate conditions and management of sown meadows on the herbage productivity and properties of gray forest soils. Pochvovedeniye. 2000; (2):1501-1508. (In Russ.)

8. Zalesov SV, Magasumova AG, Yurovskikh EV. Regeneration of former agricultural lands in Slovodo-Turinsky district of Sverdlovsk region. Lesa Rossii i Khozyaystvo v Nikh. 2010; (3):14-23. (In Russ.)

9. Kechaykina IO, Ryumin AG, Chukov SN. Postagrogenic transformation of organic matter in soddy-podzolic soils. Pochvovedeniye. 2011;(10):1178-93. (In Russ.)

10. Kuznetsova IV, Tikhonravova PI, Bondarev AG. Changes in the properties of cultivated gray forest soils after their abandoning. Pochvovedeniye. 2009;(9):1442-1150. (In Russ.)

11. Litvinovich AV, Pavlova OYu, Chernov DV, Fomina AS. Changes in the humus status of sandy sod-podzol soil under cultivation and following removal from the economic cycle Agrokhimiya. 2004;(8):13-19. (In Russ.)

12. Litvinovich AV, Pavlova OYu, Drichko VF, Chernov DV, Fomina AS. Changes in the acid-base properties of cultivated sandy sod-podzol soils as related to the layland state duration Pochvovedeniye. 2005;(10):1232-9. (In Russ.)

13. Lyuri DI, Goryachkin SV, Karayeva NA, Denisenko EA, Nefedova TG. Dinamika Selskokhoziaystvennykh Zemel v XX Veke i Postagrogennoye Vosstanovleniye Rstitelnosti i Pochv Dynamics of Agricultural Lands of Russia in the XX Century and Postagrogenic Restoration of Vegetation and Soils. Moscow: GEOS; 2010. (In Russ.)

14. Mostovaya AS, Kurganova IN, Lopes de Gerenyu VO, Khokhlova OS, Rusakov AV, Shapovalov AS. Changes in the microbial activity of gray forest soils during the natural reforestation. Vestnik Voronezhskogo Gosugarstvennogo Universiteta Ser Khimiya Biologiya Farmatsiya. 2015;(2):64-72. (In Russ.)

15. Pankova EI, Novikova AF. Soil degradation processes on agricultural lands of Russia. Pochvovedeniye. 2000; (3):366-79. (In Russ.)

16. Perepechina YuI, Glushenkov OI, Korsikov RS. Evaluation of forests located on agricultural lands in Bryansk region. Lesotekhnicheskiy Zhurnal. 2015;1(17):74-84. (In Russ.)

17. Ryzhova IM, Yerokhova AA, Podvezennaya MA. Alterations of the carbon storages in postagrogenic ecosystems due to natural reforestation in Kostroma Oblast. Lesovedeniye. 2015;(4):307-17.

18. Sukachev VN, Zonn SV. Metodicheskiye Ukazaniya k Izucheniyu Lesa Manual of Forest Stidues. Moscow: AN SSSR; 1961. (In Russ.)

19. Utkin AI, Gulbe TA, Gulbe YaI, Yermolova LS. On advance of forest vegetation to agricultural lands in the Upper Volga River Basin. Lesovedeniye. 2002;(5):44-52. (In Russ.)

20. Anderson TH. Physiological analysis of microbial communities in soil: Applications and limitations. In: Beyond the Biomass. Rits K, Dighton J, Giller KE. (Eds.). London: J. Wiley & Sons Publ.; 1994. p. 67-76.

21. Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA. Contributions of land-use history to carbon accumulation in U.S. forests. Science. 2000;290:1148-151.

22. Crowder A, Harmsen R. Notes on forest succession in old fields in southeastern Ontario: The woody species. Can Field Naturalist. 1998;112:410-18.

23. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science. 1998;282:442-6.

24. Goodale CL, Aber JD, McDowell WH. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems. 2000;3:433-50.

25. Harmer R, Peterken G, Kerr G, Poulton P. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biol Conserv. 2001;101(3):291-304.

26. Hooker TD, Compton JE. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Applicat. 2003;13(2):299-313.

27. Houghton RA, Hackler JL, Lawrence KT. The U.S. carbon budget: contributions from land-use change. Science. 1999;285:574-8.

28. Kalinina O, Goryachkin SV, Karavaeva NA, Lyuri DI, Najdenko L, Giani L. Self-restoration of post-agrogenic sandy soils in the southern Taiga of Russia: Soil development, nutrient status, and carbon dynamics. Geoderma. 2009; 152:35-42.

29. Kalinina O, Chertov O, Dolgikh AV, Lyuri DI, Vormstein S, Giani L. Self-restoration of post-agrogenic stagnic albeluvisols: Soil development, carbon stocks and dynamics of carbon pools. Geoderma. 2013;207-208:221-33.

30. Karelin DV, Lyuri DI, Goryachkin SV, Lunin VN, Kudikov AV. Changes in the carbon dioxide emission from soils in the course of post-agrogenic succession in the chernozem forest-steppe. Eurasian Soil Science. 2015; 48(11):1229-1241.

31. Kurganova I, Yermolaev A, Lopes de Gerenyu V, Larionova A, Kuzyakov Y, Keller T, Lange S. Carbon balance in soils of abandoned lands in Moscow region. Eurasian Soil Science. 2007; 40(1):50-58.

32. Kurganova IN, Lopes de Gerenyu VO, Myakshina TN, Sapronov DV, Lichko VI, Yermolaev AM. Сhanges in the carbon stocks of former croplands in Russia. Zemes Uko Mokslai. 2008;15(4):10-15.

33. Lyuri DI, Karelin DV, Kudikov AV, Goryachkin SV. Changes in soil respiration in the course of the postagrogenic succession on sandy soils in the southern taiga zone. Eurasian Soil Science. 2013;46(9):935–947.

34. Morris SJ, Bohm S, Haile-Mariam S, Paul EA. Evaluation of carbon accrual in afforested agricultural soils. Global Change Biol. 2007; 13(6):1145-56.

35. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B. and nine others. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science. 2001;292:2316-2320.

36. Perez-Cruzado C, Mansilla-Salinero P, Rodriguez-Soalleiro R, Merino A. Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant and Soil. 2011;35(1–2):333-53.

37. Silver WL, Osterlag R, Lugo AE. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol. 2000;8:394-407.

38. Stanturf JA, Madsen I. Restoration concepts for temperate and boreal forests of North America and Western Europe. Plant Biosystems. 2002; 2:143-158.

39. Susyan EA. Forest succession on abandoned arable soils in European Russia: Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity. Eur J Soil Biol. 2011;47:169-74.

40. Thuille A, Schulze E-DEF. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biol. 2006;12:325-42.

41. Tikkanen OP, Chernyakova I, Heikkila R. Vanished villages – imprint of traditional agriculture in forest landscape of western White Sea Karelia. Trudy Karelskogo Nauchnogo Tsentra RAN. 2014;6:148-56.

42. Vladychenskii AS, Telesnina VM, Rumyantseva KA, Chalaya TA. Organic matter and biological activity of postagrogenic soils in the Southern Taiga using the example of Kostroma Oblast. Eurasian Soil Science. 2013;46 (5):518-29.

43. van der Wal A, van Veen JA, Smant W, Boschker TS, Bloem J, Kardol P, van der Putten WH, de Boer W. Fungal biomass development in a chronosequence of land abandonment. Soil Biol Biochem. 2006; 38:51-60.




DOI: http://dx.doi.org/10.24855/biosfera.v11i3.506

Refbacks

  • There are currently no refbacks.