СТРУКТУРА И АРЕАЛЫ ПОПУЛЯЦИЙ ФИТОПАТОГЕННЫХ ГРИБОВ

М.М. Левитин, Н.В. Мироненко

Аннотация


Установление структуры и ареалов популяций фитопатогенных грибов имеет не только научную значимость, но и важное практическое значение для селекции и распределения в агроценозах болезнеустойчивых сортов, повышения эффективности защитных мероприятий, улучшения экологической обстановки на посевах сельскохозяйственных культур. В последнее десятилетие разработан ряд новых подходов в методах анализа популяций. В частности, разработаны новые типы молекулярных маркеров, техника скоростного секвенирования, внедрены новые аналитические программы. Это позволило уточнить структуру и степень локализации ряда популяций фитопатогенных грибов. Некоторые виды фитопатогенных грибов имеют широкий ареал распределения. К ним относятся многие виды ржавчинных грибов, как, например, Puccinia triticina, P. graminis, P. striiformis и некоторые виды гемибиотрофных грибов – Cochliobolus sativus, Mycosphaerella graminicola и Phaeosphaeria nodorum. В частности, показано, что на территории России существуют по меньшей мере 3 популяции P. triticina, различающиеся по вирулентности. Известны виды с узкой локализацией, например, Pyrenophora teres и Fusarium oxysporum. Узколокальное распределение популяций возбудителей болезней требует иного подхода в использовании генов устойчивости, чем для популяций, имеющих широкий ареал.

Ключевые слова


популяция, ареал, фитопатогенные грибы, молекулярные маркеры.

Полный текст:

PDF

Литература


Афанасенко ОС, Мироненко НВ, Филатова ОА, Серениус М. Структура популяций Pyrenophora teres f. teres из Ленинградской области и Финляндии по признаку вирулентности. Микол фитопатол. 2007;41:261-8.

Булат СА, Мироненко НВ. Генетическая дифференциация фитопатогенного гриба Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dastur (Bipolaris sorokiniana) Shoem., выявляемая методом полимеразной цепной реакции с универсальными праймерами (УП-ПЦР): корреляция с хозяин-специфичностью. Генетика. 1993;29:1295-301.

Гультяева ЕИ, Шайдаюк ЕЛ, Казарцев ИА, Аристова МК. Структура российских популяций Puccinia triticina Eriks. Вестник защиты растений. 2015;3:5-10.

Гультяева ЕИ, Шайдаюк ЕЛ, Аристова МК, Казарцев ИА. Структура популяций Рuccinia triticina в европейских регионах России. Вестник защиты растений. 2016;89(3):56-7.

Гультяева ЕИ, Аристова МК, Шайдаюк ЕЛ, Казарцев ИА. Структура азиатских популяций Рuccinia triticina по вирулентности и микросателлитным маркерам. Микол фитопатол. (в печати)

Квитко КВ. Относительная роль мутаций и отбора в микробных популяциях. Усп совр генет. 1974;5:101-3.

Левитин ММ, Афанасенко ОС. Структура популяций возбудителя сетчатой пятнистости ячменя по признаку вирулентности. III. Локальность популяций. Микол фитопатол. 1980;14:130-2.

Левитин ММ, Петрова АН, Афанасенко ОС. Сравнительное изучение популяций Bipolaris sorokiniana (Sacc.) Shoem. по признаку вирулентности. Микол фитопатол. 1985;19:154-7.

Мироненко НВ. Современные достижения в изучении генетической структуры популяций фитопатогенных грибов. Усп совр биол. 2004;124:234-45.

Михайлова ЛА. Структура популяций возбудителя бурой ржавчины пшеницы. III. Оценка степени сходства популяций на территории СНГ в 1988-1990 гг. Микол фитопатол. 1995;29(3):45-51.

Михайлова ЛА. Структура популяций возбудителя бурой ржавчины пшеницы на территории СНГ V. Ареалы популяций и направления миграции спор. Микол фитопатол. 1996;30(4):84-90.

Михайлова ЛА, Васильев СВ. Ареалы популяций возбудителя листовой ржавчины пшеницы. Микол фитопатол. 1985;19:158-63.

Печуркин НС. Популяционная микробиология. Новосибирск: Наука; 1978.

Портянкин ДЕ, Терехова ВА, Левитин ММ. Изучение популяционной изменчивости возбудителя фузариозного увядания льна в Белоруссии. Микол фитопатол. 1988;22:362-8.

Санин СС. Эпифитотии болезней зерновых культур: теория и практика. М.: ВНИИФ; 2012.

Степанов КМ. Распространение инфекционных болезней растений воздушными течениями. В кн.: Труды по защите растений. Л.М; 1935. с. 7-67.

Afanasenko OS, Mironenko NV, Filatova OA, Serenius M. The structure of Pyrenophora teres f. teres populations from Leningrad region and Finland defined by their virulence. Mykologiya i Fitopatologiya. 2007;41:261-8. (In Russ.)

Bulat SA, Mironenko NV. Genetic differentiation of phytopathogenic fungus Cochliobolus sativus (Ito and Kurib.) Drechsl. Ex Dastur (Bipolaris sorokiniana (Sacc.: Sorok.) Shoem.) detected by universally primed polymerase chain reaction UP-PCR technique: correlation with host-specificity. Genetika. 1993;29:1295-301. (In Russ.)

Gultyaeva EI, Shaidayuk EL, Kazartsev IA, Aristova M. The structure of Russian populations of Puccinia triticina Eriks. Vestnik Zashchity Rasteniy 2015;3:5-10. (In Russ.)

Gultyaeva EI, Shaydayuk EL, Aristova MK, Kazartsev IA. The structure of Puccinia triticina populations in the European regions of Russia. Vestnik Zashchity Rasteniy. 2016;89(3):56-7. (In Russ.)

Gultyaeva EI, Aristova MK, Shaydayuk EL, Kazartsev IA. Structure of Asian populations of Puccinia triticina for virulence and miсrosatellite markers. Mikologiya i Fitopatologiya (in press). (In Russ.)

Kvitko KV. Relative role of mutations and selection in microbial populations. Uspekhi Sovremennoy Genetiki 1974;5:101-3. (In Russ.)

Levitin MM, Afanasenko OS. The structure of populations of the causal agent on net blotch in barley defined by their virulence. III. The locality of populations. Mykologiya i Fitopatologiya. 1980;14:130-2. (In Russ.)

Levitin MM, Petrova AN, Afanasenko OS. Comparative studying of Bipolaris sorokiniana(Sacc.) Shoem. populations by their virulence. Mycologiya i Fitopatologiya. 1985;19:154-7. (In Russ.)

Mironenko NV. Advances in studying the genetic structure of phytopathogenic fungi populations. Uspekhi Sovremennoy Biologii. 2004;124:234-45. (In Russ.)

Mikhailova LA. The structure of populations of the causal agent of wheat brown rust. III. An assessment of the similarity between populations in CIS territory in 1988-1990. Mykologiya i Fitopatologiya. 1995;29(3):45-51. (In Russ.)

Mikhailova LA. The structure of populations of the causal agent of wheat brown rust in CIS territories V. Population areas and the direction of conidia migration. Mycologiya i Fitopatologiya. 1996;30(4):84-90. (In Russ.)

Mikhailova LA, Vasiliev SV. Populations areas of the causal agent of wheat brown rust. Mykologiya i Fitopatologiya. 1985;19:158-63. (In Russ.)

Pechurkin NS. Populiatsyonnaya Mikrobiologiya. Population Microbiology. Novosibirsk: Nauka; 1978. (In Russ.)

Portyankin DE, Terekhova VA, Levitin MM. Studying of population variability of the causal agent of flax fusariosis in Belarus. Mykologiya i Fitopatologiya. 1988;22:362-8. (In Russ.)

Sanin SS. Epifitotii Bolezney Zernovykh Kultur: Teoriya i Praktika. Moscow: VNIIF; 2012. (In Russ)

Stepanov KM. Distribution of infectious diseases of plants by air currents. In: Trudy po Zashchite Rasteniy. Leningrad-Moscow; 1935. p. 7-67. (In Russ.)

Adhikari TB, Ali S, Burlakoti RR, Singh PK, Mergoum M, Goodwin SB. Genetic structure of Phaeosphaeria nodorum populations in the North-Central and Midwestern United States. Populat Biol. 2008;98:101-7.

Afanasenko O. Investigations on populations of Pyrenophora teres f. teres, the cause of net blotch of barley. J Russ Phytopathol Soc. 2001;2:9-18.

Afanasenko OS, Hartleb H, Guseva NN, Minarikova V, Janosheva MA. A set of differential to characterize populations of Pyrenophora teres Drechs. for international use. J Phytopathol. 1995;143:501-7.

Banke S, McDonald BA. Migration patterns among global populations of the pathogenic fungus Mycosphaerella graminicola. Molec Ecol. 2005;14:1881-96.

Bolton MD, Kolmer JA, Garvin DF. Wheat leaf rust caused by Puccinia triticina. Molecr Plant Pathol. 2008;9:563-75.

Chen RS, McDonald BA. Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics. 1996;142:1119-27.

Duan X, Enjalbert J, Vautrin D, Solignac C, Giraut T. Isolation of 12 microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia triticina. Mol Ecol Notes. 2003;3:65-7.

Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genets. 2004; 5:435-45.

Ellegren C, Zhan J, McDonald BA. Population structure of Mycosphaerella graminicola from lesions to continents. Phytopathology. 2002;92:946-55.

Gultyaeva EI, Dmitriev AP, Kosman E. Regional diversity of Russian populations of Puccinia triticina in 2007. Can J Plant Pathol. 2012;34:213-24.

Kingman JFC. The coalescent. Stochastic Processes and Their Applications. 1982;13:235-46.

Kolmer JA. Molecular polymorphism and virulence phenotypes of the wheat leaf rust fungus Puccinia triticina in Canada. Can J Bot. 2001;79:917-26.

Kolmer JA, Liu JQ. Virulence and molecular polymorphism in international collections of the wheat leaf rust fungus Puccinia triticina. Phytopathology. 2000;90:427-36.

Kolmer JA, Liu JQ, Siem M. Virulence and molecular polymorphism in Puccinia recondita f. sp. tritici in Canada. Phytopathology. 1995;85:276-85.

Kolmer JA, Ordonez ME. Genetic differentiation of Puccinia triticina populations in Central Asia and the Caucasus. Phytopathology. 2007;97:1141-9.

Kolmer J, Ordonez M, Kun X, Fox A, Acevedo M. Genetic Differentiation and Migration in Worldwide Populations of the Wheat Leaf Rust Fungus, Puccinia triticina. 14th International Cereal Rusts and Powdery Mildews Conference 2015, p. 21 (www.emcrf.au.dk/icrpmc2015).

Meng J-W, Zhu W, He M-H, E-J Wu, G-H Duan, Y-K Xie, Y-J Jin, L-N Yang, L-P Shang, J Zhan. Population genetic analysis reveals cryptic sex in the phytopathogenic fungus Alternaria alternata. Sci Rep. 2015. DOI: 10.1038/srep18250.

Mironenko NV, Bulat SA. Genetic structure of Cochliobolus sativus (Bipolaris sorokiniana) populations isolated from different hosts as revealed by UP-PCR (RAPD-like) technique. J Russ Phytopatholl Soc. 2001;2:25-30.

Mikhailova LA, Gultyaeva EI, Walter U, Kophanke D. An attempt to review Puccinia recondita f. sp. triciti populations in Western and Eastern Europe together with the Asian part of Russia. J Russ Phytopathol Soc. 2002;3:1-6.

Ordonez ME, German SE, Kolmer JA. Genetic differentiation within the Puccinia triticina population in South America and comparison with the north American population suggest common ancestry and intercontinental migration. Phytopathology. 2010;100:376-83.

Park RF, Burdon JJ, Mcintosh RA. Studies of the origin, spread, and evolution of an important group of Puccinia recondita f.sp.tritici pathotypes in Australia. Eur Plant Pathol. 1995;101:613-22.

Park RF, Felsenstein FG. Physiological specialization and pathotype distribution of Puccinia recondita in Western Europe, 1995. Plant Pathol. 1998;47:157-64.

Park RF, Jahoor A, Felsentstein FG. Population structure of Puccinia recondita in western Europe during1995, as assessed by variability in pathogenicity and molecular markers. J Phytopathol. 2000;148:169-79.

Pretorius ZA, Visser B, Terefe T, Herselman L, Prins R, Soko T, Siwale J, Mutari B, Selinga TI, Hodson DP. Races of Puccinia triticina detected on wheat in Zimbabwe, Zambia and Malawi and regional germplasm responses. Australian Plant Pathol. 2015;44:217-34.

Serenius M, Manninen O, Wallwork H, Williams K. Genetic differentiation in Pyrenophora teres populations measured with AFLP markers. Mycol Res. 2007;111: 213-23.

Serenius M, Mironenko N, Manninen O. Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing net blotch of barley in Finland. Mycol Res. 2005;109:809-17.

Stukenbrock EH, Banke S, McDonald BA. Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Molec Ecol. 2006;15:2895-904.

Szabo LS, Kolmer JA. Development of simple sequence repeat markers for the plant pathogenic rust fungus Puccinia triticina. Mol Ecol Notes. 2007;7: 708-10.




DOI: http://dx.doi.org/10.24855/biosfera.v8i2.245

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"