JOINT EFFECTS OF HUMATES AND RHIZOBACTERIA ON THE GROWTH AND VIABILITY OF JAPANESE SPIRAEA (SPIRAEA JAPONICA, L.F.) SEEDLINGS

Р.С. Иванов, М.Д. Тимергалин, С.П. Четвериков, Н.А. Рязанова, З.Х. Шигапов, А.М. Назаров, Г.Р. Кудоярова

Abstract


The shrubs Japanese spiraea (Spiraea japonica, L.F.) is widely used in urban gardening. To improve the quality of seedlings, humates and growth-stimulating bacteria preparations are often applied. Humates enhance bacterial transport, bacterial safety, and colonization of roots by bacteria and stimulate organic acid release from roots, the acids serving as nutrients for bacteria. Rhizobacteria stimulate plant development by facilitating nutrient availability, phytohormone production, and roots and branches sprouting and by enhancing plant ability to tolerate biotic and abiotic stresses. We have demonstrated a cumulative effect of applying a humate preparation combined with growth stimulatory rhizobacteria strains Pseudomonas chlororaphis 4CH и Pseudomonas protegens DA1.2 on the condition and growth of spiraea seedlings. In particular, the plants subjected to the joint effect of both agents exhibit the highest shoot and root sizes, chlorophyll content, and nitrogen balance index. The stimulatory effect of bacteria is associated, according to literature, with their ability to produce auxins, and the growth-stimulating effect of humic substances is associated with the possible presence of auxin-like substances in their composition.. The combined use of humates and rhizobacteria preparations is a promising approach to improving the viability and growth of Japanese spiraea and probably other decorative shrubs.

Keywords


Japanese spiraea (Spiraea japonica, L.F.), humates, rhizobacteria, Pseudomonas chlororaphis 4CH; Pseudomonas protegens DA1.2


Как процитировать материал

References


1. Горбунова СВ, Сеньков АО, Файзулин ДХ. Опыт применения гуминового препарата при выращивании сеянцев хвойных пород с закрытой корневой системой в условиях Архангельской области. Сибирский лесной журнал. 2022; 1:41–51. http://doi.org/10.15372/SJFS20220104

2. Назаров АМ, Туктарова ИО, Четвериков СП, Иванов РС, Тимергалин М, Рязанова НА, Кудоярова ГР. Препараты на основе бактерий и гуматов для лесовосстановления и повышения депонирования углерода древесными растениями. Биосфера. 2023; 15(4): 308-316. https://doi.org/10.24855/biosfera.v15i4.866

3. Тимергалин МД, Феоктистова АВ, Рамеев ТВ, Бакаева МД, Стариков СН, Султангазин ЗР, Четвериков СП. Влияние ризосферных бактерий, способных к биосинтезу и/или деструкции фитогормонов, на ростовые характеристики и гормональный статус растений пшеницы в условиях дефицита воды. Агрохимия. 2024; 9: 51–57. https://doi.org/10.31857/S0002188124090068

4. Феоктистова АВ, Тимергалин МД, Рамеев ТВ, Четвериков СП. Совместное воздействие штамма PGPB Pseudomonas plecoglossicida 2,4-D и гуминовых веществ на рост, содержание фотосинтетических пигментов и фитогормонов в растениях пшеницы в условиях засухи. Агрохимия. 2023; 9: 28-36. https://doi.org/10.31857/S0002188123090065

1. Gorbunova SV, Sen'kov AO, Fajzulin DH. [The experience of using a humic preparation for growing coniferous ball-rooted seedlings in the conditions of Arkhangelsk oblast]. Sibirskiy Lesnoy Zhurnal. 2022; 1:41–51. http://doi.org/10.15372/SJFS20220104 (In Russ.)

2. Nazarov AM, Tuktarova IO, Chetverikov SP, Ivanov RS, Timergalin M, Ryazanova NA, Kudoyarova GR. [Bacteria- and humate-based preparations for forest restoration and for enhancing carbon sequestration by trees]. Biosfera. 2023; 15(4): 308-316. https://doi.org/10.24855/biosfera.v15i4.866 (In Russ.)

3. Timergalin MD, Feoktistova AV, Rameev TV, Bakaeva MD, Starikov SN, Sultangazin ZR, Chetverikov SP. [Effect of rhizospheric bacteria capable of biosynthesis and/or destruction of phytohormones on the growth characteristics and hormonal status of wheat plants in conditions of water scarcity]. Agrokhimiya. 2024; 9: 51–57. https://doi.org/10.31857/S0002188124090068 (In Russ.)

4. Feoktistova AV, Timergalin MD, Rameev TV, Chetverikov SP. [Combined effect of PGPR strains Pseudomonas plecoglossicida 2,4-D and humic substances on the growth, content of photosynthetic pigments and phytohormones in wheat plants in drought conditions]. Agrokhimiya. 2023; 9: 28-36. https://doi.org/10.31857/S0002188123090065 (In Russ.)

5. Aasfar A, Meftah Kadmiri I, Azaroual SE, Lemriss S, Mernissi NE, Bargaz A, Zeroual Y, Hilali A. Agronomic advantage of bacterial biological nitrogen fixation on wheat plant growth under contrasting nitrogen and phosphorus regimes. Front Plant Sci. 2024; 15: 1388775. https://doi.org/10.3389/fpls.2024.1388775

6. Arkhipova TN, Galimsyanova NF, Yu KL, Vysotskaya LB, Sidorova LV, Gabbasova IM, Melentiev AI, Kudoyarova GR. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizospere. Plant Soil Environ. 2019; 65(6): 313–319. https://doi.org/10.17221/752/2018-PSE

7. Arkhipova T, Martynenko E, Sharipova G, Kuzmina L, Ivanov I, Garipova M, Kudoyarova G. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants. 2020; 9: 1429. https://doi.org/10.3390/plants9111429

8. Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem. 2014; 74: 84–91. https://doi.org/10.1016/j.plaphy.2013.10.032

9. Cahyo AN, Ardika R, Saputra J, Wijaya T. Acceleration on the growth of rubber planting materials by using foliar application of humic acid. J Agric Sci. 2014; 36: 112–119. http://doi.org/10.17503/agrivita.v36i2.397.

10. Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil 2014; 383: 3–41 https://doi.org/10.1007/s11104-014-2131-8

11. Chaiya L, Gavinlertvatana P, Teaumroong N, Pathomaree W, Chaiyasen A, Sungthong R, Lumyong S. Enhancing Teak (Tectona grandis) seedling growth by rhizosphere microbes: A sustainable way to optimize agroforestry. Microorganisms. 2021; 9:1990. https://doi.org/10.3390/microorganisms9091990

12. Chetverikov SP, Chetverikova DV, Bakaeva MD, Kenjieva AA, Starikov SN, Sultangazin ZR. A promising herbicide-resistant bacterial strain of Pseudomonas protegens for stimulation of the growth of agricultural cereal grains. Appl Biochem Microbiol. 2021; 57:110-116. https://doi.org/10.1134/S0003683821010051

13. Cousson A, Vavasseur A. Putative involvement of cytosolic Ca₂C and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta. 1998; 206: 308–14

14. de Andrade LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms. 2023;11(4):1088. http://doi.org/10.3390/microorganisms11041088

15. da Silva MSRA, dos Santos BdMS, da Silva CSRA, da Silva CSRA, Antunes LFS, dos Santos RM, Santos CHB, Rigobelo EC. Humic substances in combination with plant growth-promoting bacteria as an alternative for sustainable agriculture. Front Microbiol. 2021; 12:719653. https://doi.org/10.3389/fmicb.2021.719653

16. Ennab HA, Mohamed AH, El-Hoseiny HM, Omar AA, Hassan IF, Gaballah MS, Khalil SE, Mira AM, Abd El-Khalek AF, Alam-Eldein SM. Humic acid improves the resilience to salinity stress of drip-irrigated Mexican lime trees in saline clay soils. Agronomy. 2023; 13(7):1680. https://doi.org/10.3390/agronomy13071680

17. Ertani A, Pizzeghello D, Baglieri A, Cadili V, Tambone F, Gennari M, Nardi S, Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J Geochem Explor. 2013; 129: 103-111. https://doi.org/10.1016/j.gexplo.2012.10.001

18. Feoktistova A, Bakaeva M, Timergalin M, Chetverikova D, Kendjieva A, Rameev T, Hkudaygulov G, Nazarov A, Kudoyarova G, Chetverikov S. Effects of humic substances on the growth of Pseudomonas plecoglossicida 2,4-D and wheat plants inoculated with this strain. Microorganisms. 2022; 10:1066. https://doi.org/10.3390/microorganisms10051066

19. Jindo K, Canellas LP, Albacete A, Santos LF, Rocha RLF, Baia DC, Canellas NOA, Goron TL, Olivares FL. Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy. 2020; 10: 640. https://doi.org/10.3390/agronomy10050640

20. Kudoyarova G, Arkhipova T, Korshunova T, Bakaeva M, Loginov O, Dodd IC Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front Plant Sci. 2019; 10:1368. https://doi.org/10.3389/fpls.2019.01368

21. Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LYu, Galimsyanova NF, Sidorova LV, Gabbasova IM, Melentiev AI, Veselov SYu. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol Plant. 2017; 39: 253 https://doi.org/10.1007/s11738-017-2556-9

22. Lahlou M, Harms H, Springael D, Ortega-Calvo J-J. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous. Media Environ Sci Technol. 2000; 34:3649-3656. https://doi.org/10.1021/es000021t

23. Meier M, Liu Y, Lay-Pruitt KS, Takahashi H, von Wirén N. Auxin-mediated root branching is determined by the form of available nitrogen. Nat. Plants 2020; 6: 1136–1145. https://doi.org/10.1038/s41477-020-00756-2

24. Muscolo A, Cutrupi S, Nardi S. IAA detection in humic substances. Soil Biol. Biochem. 1998; 30 (8/9): 1199 – 201. https://doi.org/10.1007/s10886-006-9206-9

25. Nardi S, Pizzeghello D, Muscolo A, Vianello A. Physiological effects of humic substances on higher plants. Soil Bio. Biochem. 2002; 34:1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8

26. Nardi S, Schiavon M, Francioso O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules. 2021; 26:2256. https://doi.org/10.3390/molecules26082256

27. Nazarov AM, Garankov IN, Tuktarova IO, Salmanova ER, Arkhipova TN, Ivanov II, Feoktistova AV, Prostyakova ZG, Kudoyarova GR. Hormone balance and shoot growth in wheat (Triticum durum Desf.) plants as influenced by sodium humates of the granulated organic fertilizer. Agric Biol. 2020; 55:945–955. https://doi.org/10.15389/agrobiology.2020.5.945eng

28. Nazarov S, Chetverikov D, Chetverikova I, Tuktarova R, Ivanov R, Urazgildin I, Garankov G, Kudoyarova A. Microbial preparations combined with humic substances improve the quality of tree planting material needed for reforestation to increase carbon sequestration. Sustainability. 2023; 15: 7709. https://doi.org/10.3390/su15097709

29. Nazarov A, Chetverikov S, Timergalin M, Ivanov R, Ryazanova N, Shigapov Z, Tuktarova I, Urazgildin R, Kudoyarova G. Improving tree seedling quality using humates combined with bacteria to address decarbonization challenges through forest restoration. Plants. 2024; 13: 1452. https://doi.org/10.3390/plants13111452

30. Olaetxea M, Mora V, Bacaicoa E, Baigorri R, Garnica M, Fuentes M, Zamarreño AM, Spíchal L, García-Mina JM. Root ABA and H⁺-ATPase are key players in the root and shoot growth-promoting action of humic acids. Plant Direct. 2019; 3(10): e00175. https://doi.org/10.1002/pld3.175

31. Olivares FL, Busato JG, de Paula AM, da Silva LL, Aguiar NO, Canellas LP, Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem Biol Technol Agric. 2017; 4:30 https://doi.org/10.1186/s40538-017-0112-x

32. Park J, Lee Y, Martinoia E, Geisler M. Plant hormone transporters: what we know and what we would like to know. BMC Biol. 2017; 15: 93. https://doi.org/10.1186/s12915-017-0443-x

33. Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol Res. 2014; 169:325–336. http://doi.org/10.1016/j.micres.2013.09.011

34. Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S. Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A₂. Plant Soil. 2006; 283: 175–185. https://doi.org/10.1007/s11104-006-0011-6

35. Shen C, Yue R, Bai Y, Feng R, Sun T, Wang X, Yang Y, Tie S, Wang H. Identification and analysis of Medicago truncatula auxin transporter gene families uncover their roles in responses to Sinorhizobium meliloti infection. Plant Cell Physiol. 2015; 56(10): 1930–1943. https://doi.org/10.1093/pcp/pcv113

36. Shinde S, Cumming JR, Collart FR, Noirot PH, Larsen PE. Pseudomonas fluorescens transportome is linked to strain-specific plant growth promotion in aspen seedlings under nutrient stress. Front Plant Sci. 2017; 8:348. https://doi.org/10.3389/fpls.2017.00348

37. Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 2001; 24: 1189–1197. https://doi.org/10.1046/j.1365-3040.2001.00768.x

38. Timergalin MD, Feoktistova AV, Kendjieva AA, Nazarov AM, Chetverikov SP, Kudoyarova GR. The effect of bacterial treatment in combination with humic substances on growth, indicators of oxidative stress and water relations of wheat plants under soil water shortage. Russ J Plant Physiol. 2023; 70: 200. https://doi.org/10.1134/S1021443723602409

39. Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S. Humic substances induce lateral root formation and the expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol. 2010; 12: 604–614. https://doi.org/10.1111/j.1438-8677.2009.00248.x.

40. Varanini Z, Pinton R. Humic substances and plant nutrition. In: Lüttge U, (Ed.), Progr Bot. 1995; 56: 97-117. https://doi.org/10.1007/978-3-642-79249-6_5

41. Veselov DS, Sharipova GV, Veselov SU, Kudoyarova GR. The effects of NaCl treatment on water relations, growth and ABA content in barley cultivars differing in drought tolerance. J Plant Growth Regul. 2008; 27: 380–386. https://doi.org/10.1007/s00344-008-9064-5

42. Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci. 2022;12:1231. http://doi.org/10.3390/app12031231

43. Wang N, Fu F, Wang H, Wang P, He S, Shao H, Ni Z, Zhang X. Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.). Sci Rep. 2021; 11: 16651. https://doi.org/10.1038/s41598-021-95792-z

44. Yang H, Kim H, Tong M. Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids Surf. B Biointerfaces. 2012; 91:122-129.

45. Zandonadi DB, Santos MP, Busato JG, Peres LEP, Façanha AR. Plant physiology as affected by humified organic matter. Theor Exp Plant Phys. 2013; 25:12-25. https://doi.org/10.1590/S2197-00252013000100003




DOI: http://dx.doi.org/10.24855/biosfera.v17i1.976

EDN: https://www.elibrary.ru/item.asp?edn=KYNICC

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"