COMMON PHYTOPATHOGENS FROM THE FUSARIUM FUJIKUROI SPECIES COMPLEX. PART 1. MAIN PRODUCERS OF FUMONISINS

Г.Д. Соколова, Н.И. Будынков

Abstract


The review is devoted to Fusarium species F. verticillioides, F. fujikuroi and F. proliferatum, which attract the attention of phytopathologists due to the diversity of taxonomic groups of affected plants and the ability to contaminate crop products with fumonisins, which belong to the group of regulated mycotoxins. Significant progress in the study of plant pathogens is associated with the use of molecular genetic methods. The work considers the factors influencing the formation of fumonisins, as well as the molecular genetic features of the structure of the genomes of phytopathogens, which support intraspecific genetic variability and ensure the ecological adaptability of species.

Keywords


F. fujikuroi, F. proliferatum, F. verticillioides, phytopathogens, fumonisins.


Как процитировать материал

References


Литовка ЮА, Рязанова ТВ. Ареал и представленность микромицетов рода Fusarium в лесных питомниках Средней и Южной Сибири. Хвойные бореальной зоны. 2014;32(1–2):18-24.

Litovka YuA, Ryazanova TV. [Areas and representation of micromycetes of the genus Fusarium in forest nursery in Central and Southern Siberia]. Khvoynye Borealnoy Zony. 2014;32(1-2):18-24. (In Russ.)

Almiman BF, Shittu TA, Muthumeenakshi S, Baroncelli R, Sreenivasaprasad S. Genome sequence of the mycotoxigenic crop pathogen Fusarium proliferatum strain ITEM 2341 from date palm. Microbiol Resource Announc. 2018;7(9):e00964-18. doi: 10.1128/MRA.00964-18.

Amato B, Pfohl K, Tonti S, Nipoti P, Dastjerdi R, Pisi A, Karlovsky P, Prodi A. Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium head blight in durum wheat in Italy. J Appl Bot Food Qual. 2015;88:228-33. doi: 10.5073/JABFQ.2015.088.033.

Anisimova OK, Seredin TM, Danilova OA, Filyushin M. First report of Fusarium proliferatum causing garlic clove rot in Russian Federation. Plant Dis. 2021;105(10):3308. doi: 10.1094/PDIS-12-20-2743-PDN.

Aragona M, Campos-Soriano L, Piombo E, Romano E, Segundo BS, Spadaro D, Infantino A. Imaging the invasion of rice roots by the bakanae agent Fusarium fujikuroi using a GFP-tagged isolate. Eur J Plant Pathol. 2021;161(1):25-36. doi: 10.1007/s10658-021-02301-z.

Armitage AD, Taylor A, Hulin MT, Jackson AC, Harrison RJ, Clarkson JP. Draft genome sequence of an onion basal rot isolate of Fusarium proliferatum. Microbiol Resource Announc. 2019;8:e01385-18. doi: 10.1128/MRA.01385-18.

Bao WX, Inagaki S, Tatebayashi S, Sultana S, Shimizu M, Kageyama K, Suga H. Expression difference of P450–1 and P450–4 between G- and F-groups of Fusarium fujikuroi. Eur J Plant Pathol. 2021;159:27-36. doi: 10.1007/s10658-020-02133-3.

Bao WX, Suga H. Genetic background of variable gibberellin production in the Fusarium fujikuroi species complex. Rev Agricult Sc. 2021;9:32–42. doi: 10.7831/ras.9.0_32.

Bartelt RJ, Wicklow DT. Volatiles from Fusarium verticillioides (Sacc.) Nirenb. and their attractiveness to nitidulid beetles. J Agric Food Chem. 1999;47(6):2447-54. doi: 10.1021/jf9901340.

Bashyal BM, Aggarwal R, Sharma S, Gupta S, Singh UB. Single and combined effects of three Fusarium species associated with rice seeds on the severity of bakanae disease of rice. J Plant Pathol. 2016;98(3):405-12. http://www.jstor.org/stable/44280482.

Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE. Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology. 2018;108(3):312-326. doi: 10.1094/phyto-06-17-0203-rvw.

Blandino M, Reyneri A, Vanara F, Pascale M, Haidukowski M, Campagna C. Management of fumonisin contamination in maize kernels through the timing of insecticide application against the European corn borer Ostrinia nubilalis Hübner. Food Addit Contam. Part A. 2009;26(11):1501-14. doi: 10.1080/02652030903207243.

Blandino M, Scarpino V, Vanara F, Sulyok M, Krska R, Reyneri A. Role of the European corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins. Food Addit Contam. Part A. 2015;32(4):533-43. doi: 10.1080/19440049.2014.966158.

Bolton SL, Brannen PM, Glenn AE. A novel population of Fusarium fujikuroi isolated from Southeastern U.S. winegrapes reveals the need to re-evaluate the species’ fumonisin production. Toxins. 2016;8(9):254. doi: 10.3390/toxins8090254.

Braun MS, Wink M. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives. Compr Rev Food Sci Food Safety. 2018;17(3):769-91. doi: 10.1111/1541-4337.12334.

Britz H, Coutinho TA, Wingfield MJ, Marasas WFO, Gordon TR, Leslie JF. Fusarium subglutinans f. sp. pini represents a distinct mating population in the Gibberella fujikuroi species complex. Appl Environ Microbiol. 1999;65(3):1198-201. doi: 10.1128/AEM.65.3.1198-1201.1999.

Britz H, Coutinho TA, Wingfield MJ. Marasas WFO. Validation of the description of Gibberella circinata and morphological differentiation of the anamorph Fusarium circinatum. Sydowia. 2002;54:9-22.

Brown DW, Butchko RAE, Busman M, Proctor RH. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell. 2007;6(7):1210-18. doi: 10.1128/EC.00400-06.

Bugnicourt MF. Une espèce fusarienne nouvelle, parasite du riz. Revue Générale de Botanique. 1952;59:13-18.

Burgess LW, Trimboli D. Characterization and distribution of Fusarium nygamai, sp. nov. Mycologia. 1986;78(2):223-29. doi: 10.1080/00275514.1986.12025233.

Cendoya E, Chiotta ML, Zachetti V, Chulze SN, Ramirez ML. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: A review. J Cereal Sci. 2018a;80:158-66. doi: 10.1016/j.jcs.2018.02.010.

Cendoya E, Monge MDP, Chiacchiera SM, Farnochi MC, Ramirez ML. Influence of water activity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains. Int J Food Microbiol. 2018b;266:158-66. doi: 10.1016/j.ijfoodmicro.2017.12.001.

Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and their main mycotoxins: Global distribution and scenarios of interactions in maize. Toxins. 2023;15(9):577. doi: 10.3390/toxins15090577.

Chen C-Y, Chen S-Y, Liu C-W, Wu D-H, Kuo C-C, Lin C-C, Chou H-P, Wang Y-Y, Tsai Y-C, Lai M-H, Chung C-L. Invasion and colonization pattern of Fusarium fujikuroi in rice. Phytopathology. 2020;110 (12):1934-45. doi: 10.1094/PHYTO-03-20-0068-R.

Chiara M, Fanelli F, Mulè G, Logrieco AF, Pesole G, Leslie JF, Horner DS, Toomajian C. Genome sequencing of multiple isolates highlights subtelomeric genomic diversity within Fusarium fujikuroi. Genome Biol Evol. 2015;7(11):3062-9. doi: 10.1093/gbe/evv198.

Choi J-H, Lee S, Nah J-Y, Kim H-K, Paek J-S, Lee S, Ham H, Hong SK, Yun S-H, Lee T. Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int J Food Microbiol. 2018;267:62-9. doi: 10.1016/j.ijfoodmicro.2017.12.006.

Crous PW, Lombard L, Sandoval-Denis M, Seifert KA, Schroers H-J, Chaverri P. et al. Fusarium: more than a node or a foot-shaped basal cell. Stud Mycol. 2021;98:100116. doi: 10.1016/j.simyco.2021.100116.

Dastjerdi R, Karlovsky P. Systemic infection of maize, sorghum, rice, and beet seedlings with fumonisin-producing and nonproducing Fusarium verticillioides strains. Plant Pathol J. 2015:31(4):334-42. doi: 10.5423/PPJ.OA.05.2015.0088.

De Torres R, Dela Cueva F, Balendres MA. First report on the detection of fumonisin biosynthetic (FUM1) gene in Fusarium verticillioides and F. proliferatum associated with sugarcane diseases. Indian Phytopathol. 2020;73:555-59. doi: 10.1007/s42360-020-00215-0.

Donát M, Csaba S, Zsuzsanna K, János B. Identification of airborne propagules of the Gibberella fujikuroi species complex during maize production. Aerobiologia. 2012;28:263-71. doi: 10.1007/s10453-011-9213-3.

Dong S, Jiang K, Huai B, Ye L, You J, Ma Y, Tan G. Genetic variability and pathogenicity of Fusarium verticillioides isolates from the summer-sown maize regions in China. Plant Pathol. 2023;72(3):582-92. doi: 10.1111/ppa.13673.

Duncan KE, Howard RJ. Biology of maize kernel infection by Fusarium verticillioides. Mol Plant Microbe Interact. 2010;23:6-16. doi: 10.1094/MPMI-23-1-0006.

Eğerci Y, Kınay-Teksür P, Uysal-Morca A. First report of bakanae disease caused by Fusarium proliferatum on rice in Turkey. J Plant Dis Prot. 2021;128(2):577-82. doi: 10.1007/s41348-020-00369-z.

Fallahi M, Saremi H, Javan-Nikkhah M, Somma S, Haidukowski M, Logrieco AF, Moretti A. Isolation, molecular identification and mycotoxin profile of Fusarium species isolated from maize kernels in Iran. Toxins. 2019;11(5):297. doi: 10.3390/toxins11050297.

Farhadi A, Fakhri Y, Kachuei R, Vasseghian Y, Huseyn E, Khaneghah AM. Prevalence and concentration of fumonisins in cereal-based foods: a global systematic review and meta-analysis study. Environ Sci Pollut Res. 2021;28(17):20998-1008. doi: 10.1007/s11356-021-12671-w.

Ferrigo D., Mondin M., Raiola A. Pathogenic and genetic characterization of Fusarium verticillioides strains collected from maize and sorghum kernels. Agriculture. 2023;13(1):105. doi: 10.3390/agriculture13010105.

Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, Leal WS, Moura DS, Bento JMS, Silva-Filho MC. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME J: Multidiscip J Microbial Ecol. 2021;15(12):3522-33. doi: 10.1038/s41396-021-01010-z.

Gai X, Dong H, Wang S, Liu B, Zhang Z, Li X, Gao Z. Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. PLoS ONE. 2018;13(7):e0201588. doi: 10.1371/journal.pone.0201588.

Gaige A, Todd T, Stack JP. Interspecific competition for colonization of maize plants between Fusarium proliferatum and Fusarium verticillioides. Plant Dis. 2020;104(8):2102-10. doi: 10.1094/PDIS-09-19-1964-RE.

Gallan DZ, Henrique MO, Silva-Filho MC. The phytopathogen Fusarium verticillioides modifies the intestinal morphology of the sugarcane borer. Pathogens. 2023;12(3):433. doi: 10.3390/pathogens12030443.

Gálvez L, Palmero D. Fusarium dry rot of garlic bulbs caused by Fusarium proliferatum: A review. Horticulturae. 2022;8(7):628. doi: 10.3390/horticulturae8070628.

Gams W. Cephalosporium artige Schimmelpilze (Hyphomycetes). Gustav Fischer Verlag, Stuttgart, Germany. 1971.

Gao M-L, Luan Y-S, Yu H-N, Bao Y-M. First report of tomato leaf spot caused by Fusarium proliferatum in China. Can J Plant Pathol. 2016;38(3):400-4. doi: 10.1080/07060661.2016.1217277.

Gao Z, Luo K, Zhu Q, Peng J, Liu C, Wang X, Li S, Zhang H. The natural occurrence, toxicity mechanisms and management strategies of fumonisin B1: A review. Environ Pollut. 2023;320:121065. doi: 10.1016/j.envpol.2023.121065.

Geiser DM, Al-Hatmi AMS, Aoki T, Arie T, Balmas V, Barnes J. et al. Phylogenomic analysis of a 55.1-kb 19-gene dataset resolves a monophyletic Fusarium that Includes the Fusarium solani species complex. Phytopathology. 2021;111(7):1064-79. doi: 10.1094/PHYTO-08-20-0330-LE.

Gerlach W, Nirenberg H. The genus Fusarium – a pictorial atlas. Mitt. Biol. Bundesanst. Land- Forstw. 1982. V. 209. P. 1-406.

Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact. 2008;21:87–97. doi: 10.1094/MPMI-21-1-0087.

Han SL, Wang MM, Ma ZY, Raza M, Zhao P, Liang JM, Gao M, Li YJ, Wang JW, Hu DM, Cai L. Fusarium diversity associated with diseased cereals in China, with an updated phylogenomic assessment of the genus. Stud Mycol. 2023;104(1):87–148. doi: 10.3114/sim.2022.104.02.

Ibrahim NF, Mohd MH, Nor NMIM, Zakaria L. Mycotoxigenic potential of Fusarium species associated with pineapple diseases. Arch Phytopathol Plant Prot. 2020;53(5-6):217-29. doi: 10.1080/03235408.2020.1736971.

Jurgenson JE, Zeller KA, Leslie JF. An expanded genetic map of Gibberella moniliformis (Fusarium verticillioides). Appl Environ Microbiol. 2002;68:1972-79. doi: 10.1128/AEM.68.4.1972-1979.2002.

Kerenyi Z, Zeller K, Hornok L, Leslie JF. Molecular standardization of mating type terminology in the Gibberella fujikuroi species complex. Appl Environ Microbiol. 1999;65(9): 4071-76. doi: 10.1128/AEM.65.9.4071-4076.1999.

Klaasen JA, Nelson PE. Identification of a mating population, Gibberella nygamai sp. nov., within the Fusarium nygamai anamorph. Mycologia. 1996;88(6):965-69. doi: 10.1080/00275514.1996.12026737.

Klittich CJR, Leslie JF, Nelson PE, Marasas WFO. Fusarium thapsinum (Gibberella thapsina): A new species in section Liseola from sorghum. Mycologia. 1997;89(4):643-52. doi: 10.1080/00275514.1997.12026829.

Kuhlman EG. Varieties of Gibberella fujikuroi with anamorph in Fusarium section Liseola. Mycologia. 1982;74(5):759-68. doi: 10.1080/00275514.1982.12021583.

Lei S, Wan L, Liu L, Hou Y, Xu Y, Liang M, Gao J, Li Q, Huang S. Infection and colonization of pathogenic fungus Fusarium proliferatum in rice spikelet rot disease. Rice Sci. 2019;26:60-8. doi: 10.1016/j.rsci.2018.08.005.

Leslie JF. Mating populations in Gibberella fujikuroi (Fusarium section Liseola). Phytopathology. 1991;81(9):1058-60.

Leslie JF, Summerell BA, Bullock S, Doe FJ. Description of Gibberella sacchari and neotypification of its anamorph Fusarium sacchari. Mycologia. 2005;97(3):718-24. doi: 10.1080/15572536.2006.11832801.

Leslie JF, Zeller KA, Wohler M, Summerell BA. Interfertility of two mating populations in the Gibberella fujikuroi species complex. Eur J Plant Pathol. 2004;110(5-6):611-18. doi: 10.1023/B:EJPP.0000032400.55446.d8.

Lin M, Abubakar YS, Wei L, Wang J, Lu X, Lu G, Wang Z, Zhou J, Yu W. Fusarium verticillioides Pex7/20 mediates peroxisomal PTS2 pathway import, pathogenicity, and fumonisin B1 biosynthesis. Appl Microbiol Biotechnol. 2022;106(19-20):6595-6609. doi: 10.1007/s00253-022-12167-8.

Lin Z, Zhang Y, Que Y, Chen R, Chen B, Zhang M. Characterization of Fusarium verticillioide isolates from Pokkah Boeng on sugarcane and the disease incidence in field. J Microbiol Exp. 2015;2(5):151-7. doi: 10.15406/jmen.2015.02.00061.

Marìn P, Magan N, Vazquez C, González-Jaén MT. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol Ecol. 2010;73(2):303-11. doi: 10.1111/j.1574-6941.2010.00894.x.

Matsushima T. Microfungi of the Solomon Islands and Papua-New Guinea. Nippon Printing Publ. Co., Kobe. 1971.

Molnár O. Fusarium proliferatum causing head blight on oat in Hungary. Eur J Plant Pathol. 2016;146(3):699-703. doi: 10.1007/s10658-016-0940-8.

Molnár O, Bartók T, Szécsi A. Occurrence of Fusarium verticillioides and Fusarium musae on banana fruits marketed in Hungary. Acta Microbiol Immunol Hung. 2015;62(2):109-19. doi: 10.1556/030.62.2015.2.2.

Moretti AN. Taxonomy of Fusarium genus: a continuous fight between lumpers and splitters. Zbornik Matice srpske za prirodne nauke. 2009;117:7–13. doi: 10.2298/ZMSPN0917007M.

Moretti A, Mulè G, Susca A, González-Jaén MT, Logrieco A. Toxin profile, fertility and AFLP analysis of Fusarium verticillioides from banana fruits. Eur J Plant Pathol. 2004;110(5-6):601-9. doi: 10.1023/B:EJPP.0000032399.83330.d7.

Navale VD, Sawant AM, Vamkudoth KR. Genetic diversity of toxigenic Fusarium verticillioides associated with maize grains, India. Genet Mol Biol. 2023;46(1):e20220073. doi: 10.1590/1678-4685-GMB-2022-0073.

Nelson PE, Plattner RD, Shackelford DD, Desjardins AE. Fumonisin B1 production by Fusarium species other than F. moniliforme in section Liseola and by some related species. Appl Environ Microbiol. 1992;58(3):984-9. doi: 10.1128/aem.58.3.984-989.1992.

Nelson PE, Toussoun TA, Marasas WFO. Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University Press, University Park. 1983.

Nicolli CP, Haidukowski M, Susca A, Gomes LB, Logrieco A, Stea G, Del Ponte EM, Moretti A, Pfenning LH. Fusarium fujikuroi species complex in Brazilian rice: Unveiling increased phylogenetic diversity and toxigenic potential. Int J Food Microbiol. 2020;330:108667. doi: 10.1016/j.ijfoodmicro.2020.108667.

Niehaus E-M, Kim H-K, Munsterkotter M, Janevska S, Arndt B. et al. Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathog. 2017;13(10):e1006670. doi: 10.1371/journal.ppat.1006670.

Nirenberg H. Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium Sektion Liseola. Mitt Biol Bundesanst Land-Forstw. Berlin-Dahem. 1976;169:1–117.

Nirenberg HI, O’Donnell K. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia. 1998;90(3):434-58. doi: 10.2307/3761403.

Noorabadi MT, Masiello M, Taherkhani K, Zare R, Torbati M, Haidukowski M, Somma S, Logrieco AF, Moretti A, Susca A. Phylogeny and mycotoxin profile of Fusarium species isolated from sugarcane in Southern Iran. Microbiol Res. 2021;252:126855. doi: 10.1016/j.micres.2021.126855.

O’Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90(3):465–493. doi: 10.1080/00275514.1998.12026933.

O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience. 2000;41:61–78. doi: 10.1007/BF02464387.

O’Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica. 2015;43:583-95. doi: 10.1007/s12600-015-0484-z.

O’Donnell K, Whitaker BK, Laraba I, Proctor RH, Brown DW, BrodersK, Kim HS, McCormick SP, Busman M, Aoki T, Torres-Cruz TJ, Geiser DM. DNA sequence-based identification of Fusarium: A work in progress. Plant Dis. 2022;106(6):1597-609. doi: 10.1094/PDIS-09-21-2035-SR.

Oren L, Ezrati S, Cohen D, Sharon A. Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. Appl Environ Microbiol. 2003;69(3):1695-701. doi: 10.1128/AEM.69.3.1695-1701.2003.

Otieno PK, Imbahale SS, Wekesa VW, Otipa M, Okoth S. Molecular determination of toxigenic potential of Fusarium spp. isolated from seeds of wheat (Triticum aestivum) genotypes and evaluation of levels of fumonisins in the grains at harvest in three major wheat producing counties in Kenya. Int J Agronomy. 2022;2022:ID 1428312. doi: 10.1155/2022/1428312.

Palacios SA, Susca A, Haidukowski M, Stea G, Cendoya E, Ramírez ML, Chulze SN, Moretti A, Torres AM. Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina. Int J Food Microbiol. 2015;201:35-41. doi: 10.1016/j.ijfoodmicro.2015.02.011.

Pedrozo R, Fenoglio JJ, Little CR. First report of seedborne Fusarium fujikuroi and its potential to cause pre- and postemergent damping-off on soybean (Glycine max) in the United States. Plant Dis. 2015;99:1865. doi: 10.1094/PDIS-03-15-0321-PDN.

Picot A, Barreau C, Caron D, Lannou C, Richard-Forget F. The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Appl Environ Microbiol. 2011;77(23):8382-90. doi: 10.1128/AEM.05216-11.

Picot A, Barreau C, Pinson-Gadais L, Caron D, Lannou C, Richard-Forget F. Factors of the Fusarium verticillioides-maize environment modulating fumonisin production. Crit Rev Microbiol. 2010;36(3):221-31. doi: 10.3109/10408411003720209.

Piombo E, Bosio P, Acquadro A, Abbruscato P, Spadaro D. Different phenotypes, similar genomes: three newly sequenced Fusarium fujikuroi strains induce different symptoms in rice depending on temperature. Phytopathology. 2020;110(3):656-65. doi: 10.1094/PHYTO-09-19-0359-R.

Piombo E, Rosati M, Sanna M, Mezzalama M, Gullino ML, Spadaro D. Sequencing of non-virulent strains of Fusarium fujikuroi reveals genes putatively involved in bakanae disease of rice. Fungal Genet Biol. 2021;156:103622. doi: 10.1016/j.fgb.2021.103622.

Ponce-García N, Ortíz-Islas S, García-Lara S, Serna-Saldiva SO. Physical and chemical parameters, Fusarium verticillioides growth and fumonisin production in kernels of nine maize genotypes. J Cereal Sci. 2020;96:103128. doi: 10.1016/j.jcs.2020.103128.

Pramunadipta S, Widiastuti A, Wibowo A, Priyatmojo A. Rep-PCR analysis of Fusarium proliferatum causing sheath rot disease and its relationship to light, pH, temperature and rice varieties. Arch Phytopathol Plant Protect. 2022;55(8):973-90. doi: 10.1080/03235408.2022.2081484.

Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Morett A, Todd J, Ward TJ. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol. 2013;90(2):290–306. doi: 10.1111/mmi.12362.

Punja ZK. First report of Fusarium proliferatum causing crown and stem rot, and pith necrosis, in cannabis (Cannabis sativa L., marijuana) plants. Can J Plant Pathol. 2021;43:236-55. doi: 10.1080/07060661.2020.1793222.

Qiu J, Lu Y, He D, Lee Y-W, Ji F, Xu J, Shi J. Fusarium fujikuroi species complex associated with rice, maize, and soybean from Jiangsu province, China: Phylogenetic, pathogenic, and toxigenic analysis. Plant Dis. 2020;104(8):2193-201. doi: 10.1094/PDIS-09-19-1909-RE.

Rossi V, Scandolara A, Battilani P. Effect of environmental conditions on spore production by Fusarium verticillioides, the causal agent of maize ear rot. Eur J Plant Pathol. 2009;123(2):159-69. doi: 10.1007/s10658-008-9351-9.

Saleh АА, Esele JP, Logrieco A, Ritieni A, Leslie JF. Fusarium verticillioides from finger millet in Uganda. Food Addit Contam Part A. 2012;29(11):1762-69. doi: 10.1080/19440049.2012.712062.

Salem NM, AlMomany AM, Tahat MM, Aldakil H. First report of Fusarium verticillioides causing banana fruit rot in Jordan. Plant Dis. 2020;104(12):3255. doi: 10.1094/PDIS-05-20-1116-PDN.

Samuels GJ, Nirenberg HI, Seifert KA. Perithecial species of Fusarium. In: Summerell BA, Leslie JF, Backhouse D. et al. (eds.). Fusarium: Paul E. Nelson Memorial symposium. American Phytopathological Society. St. Paul MN. 2001. P. 1–11.

Sandoval-Denis M, Swart WJ, Crous PW. New Fusarium species from the Kruger National Park, South Africa. MycoKeys. 2018;34:63-92. doi: 10.3897/.ycokeys.34.25974.

Sanna M, Martino I, Guarnaccia V, Mezzalama M. Diversity and pathogenicity of Fusarium species associated with stalk and crown rot in maize in Northern Italy. Plants. 2023;12(22):3857. doi: 10.3390/plants12223857.

Scarpino V, Sulyok M, Krska R, Reyneri A, Blandino M. The role of nitrogen fertilization on the occurrence of regulated, modified and emerging mycotoxins and fungal metabolites in maize kernels. Toxins. 2022;14(7):448. doi: 10.3390/toxins14070448.

Schulthess F, Cardwell KF, Gounou S. The effects of endophytic Fusarium verticillioides on infestation of two maize varieties by lepidopterous stemborers and coleopteran grain feeders. Phytopathology. 2002;92(2):120–128. doi: 10.1094/PHYTO.2002.92.2.120.

Seifert KA, Aoki T, Baayen RP, Brayford D, Burgess LW, Chulze S, Gams W, Geiser D, de Gruyter J, Leslie JF, Logrieco A, Marasas WFO, Nirenberg HI, O’Donnell K, Rheeder J, Samuels GJ, Summerell BA, Thrane U, Waalwijk C. The name Fusarium moniliforme should no longer be used. Mycol Res. 2003;107:643–644. doi: 10.1017/S095375620323820X.

Sherif M, Kirsch N, Splivallo R, Pfohl K, Karlovsky P. The role of mycotoxins in interactions between Fusarium graminearum and F. verticillioides growing in saprophytic cultures and co-infecting maize plants. Toxins. 2023;15(9):575. doi: 10.3390/toxins15090575.

Siciliano I, Amaral Carneiro A, Spadaro D, Garibaldi A, Gullino ML. Jasmonic acid, abscisic acid and salicylic acid are involved in the phytoalexin responses of rice to Fusarium fujikuroi, a high gibberellin producer pathogen. J Agr Food Chem. 2015;63(37):8134-42. doi: 10.1021/acs.jafc.5b03018.

Singh R, Kumar P, Laha GS. Present status of bakanae of rice caused by Fusarium fujikuroi Nirenb. Ind Phytopathol. 2019;72:587-97. doi: 10.1007/s42360-019-00125-w.

Steenkamp ET, Coutinho TA, Desjardins AE, Wingfield BD, Marasas WFO, Wingfield MJ. Gibberella fujikuroi mating population E is associated with maize and teosinte. Mol Plant Pathol. 2001;2(4):215-21. doi: 10.1046/j.1464-6722.2001.00072.x.

Studt L, Troncoso C, Gong F, Hedden P, Toomajian C, Leslie JF, Humpf H-U, Rojas MC, Tudzynski B. Segregation of secondary metabolite biosynthesis in hybrids of Fusarium fujikuroi and Fusarium proliferatum. Fungal Genet Biol. 2012;49(7):567-77. doi: 10.1016/j.fgb.2012.05.005.

Suga H, Arai M, Fukasawa E, Motohashi K, Nakagawa H, Tateishi H, Fuji S, Shimizu M, Hyakumachi M. Genetic differentiation associated with fumonisin and gibberellin production in japanese Fusarium fujikuroi. Appl Environ Microbiol. 2019;85(1):e02414-18. doi: 10.1128/AEM.02414-18.

Suga H, Kitajima M, Nagumo R, Tsukiboshi T, Uegaki R, Nakajima T, Kushiro M, Nakagawa H, Shimizu M, Kageyama K, Hyakumachi M. A single nucleotide polymorphism in the translation elongation factor 1α gene correlates with the ability to produce fumonisin in Japanese Fusarium fujikuroi. Fungal Biol. 2014;118(4):402-12. doi: 10.1016/j.funbio.2014.02.005.

Sultana S, Bao W, Shimizu M, Kageyama K, Suga H. Frequency of three mutations in the fumonisin biosynthetic gene cluster of Fusarium fujikuroi that are predicted to block fumonisin production. World Mycotoxin J. 2021;14:49–59. doi: 10.3920/WMJ2020.2572.

Sultana S, Suga H. Genetic background of variable fumonisin production in the Fusarium fujikuroi species complex. Rev Agricult Sci. 2021;9:43–55. doi: 10.7831/ras.9.0_43.

Sunani SK, Bashyal BM, Kharayat BS, Prakash G, Krishnan SG, Aggarwal R. Identification of rice seed infection routes of Fusarium fujikuroi inciting bakanae disease of rice. J Plant Pathol. 2020;102(1):113-21. doi: 10.1007/s42161-019-00390-8.

Szécsi Á, Szekeres Á, Bartók T, Oros G, Mesterházy Á. Fumonisin B1-4-producing capacity of hungarian Fusarium verticillioides isolates. World Mycotoxin J. 2010;3:67-76. doi: 10.3920/WMJ2009.1152.

Terna TP, Mohamed Nor NMI, Zakaria L. Histopathology of corn plants infected by endophytic fungi. Biology. 2022;11(5):641. doi: 10.3390/biology11050641.

Torres-Cruz TJ, Whitaker BK, Proctor RH, Broders K, Laraba I, Kim HS, Brown DW, O’Donnell K, Estrada-Rodríguez TL, Lee YH, Cheong K., Wallace EC, McGee CT, Kang S, Geiser DM. FUSARIUM-ID v.3.0: An updated, downloadable resource for Fusarium species identification. Plant Dis. 2022;106(6):1610-16. doi: 10.1094/PDIS-09-21-2105-SR.

Triest D, Hendrickx M. Postharvest disease of banana caused by Fusarium musae: a public health concern? PLoS Pathog. 2016;12(11):e1005940. doi: 10.1371/journal.ppat.1005940.

Van Hove F, Waalwijk C, Logrieco A, Munaut F, Moretti A. Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia. 2011;103(3):570-85. doi: 10.3852/10-038.

Visentin I, Montis V, Döll K, Alabouvette C, Tamietti G, Karlovsky P, Cardinale F. Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukar Cell. 2012;11:252-59. doi: 10.1128/EC.05159-11.

Vismer HF, Shephard GS, van der Westhuizen L, Mngqawa P, Bushula-Njah V, Leslie JF. Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro. Int J Food Microbiol. 2019;296:31-6. doi: 10.1016/j.ijfoodmicro.2019.02.016.

Waalwijk C, Taga M, Zheng S-L, Proctor RH, Vaughan MM, O’Donnell K. Karyotype evolution in Fusarium. IMA Fungus 2018;9:13-26. doi: 10.5598/imafungus.2018.09.01.02.

Wang L, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genome-wide characterization reveals variation potentially involved in pathogenicity and mycotoxins biosynthesis of Fusarium proliferatum causing spikelet rot disease in rice. Toxins. 2022a;14(8):568. doi: 10.3390/toxins14080568.

Wang L, Liu Q, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genomic footprints related with adaptation and fumonisins production in Fusarium proliferatum. Front Microbiol. 2022b;13:1004454. doi: 10.3389/fmicb.2022.1004454.

Wang Y, Zhao W, Han S, Wang L, Chang X, Liu K, Quan Y, He K. Seven years of monitoring susceptibility to Cry1Ab and Cry1F in Asian corn borer. Toxins. 2023;15(2):137. doi: 10.3390/toxins15020137.

Wangia-Dixon RN, Nishimwe K. Molecular toxicology and carcinogenesis of fumonisins: a review. J Environ Sci Health Pt C. 2021;39(1):44–67. doi: 10.1080/26896583.2020.1867449.

Waśkiewicz A, Stępień Ł, Wilman K, Kachlicki P. Diversity of pea-associated F. proliferatum and F. verticillioides populations revealed by FUM1 sequence analysis and fumonisin biosynthesis. Toxins. 2013;5(3):488-503. doi: 10.3390/toxins5030488.

Wineland GO. An ascigerous stage and synonomy for Fusarium moniliforme. J Agric Res. 1924;28(9):909-22. https://www.biodiversitylibrary.org/item/280950.

Xie L, Wu Y, Wang Y, Jiang Y, Yang B, Duan X, Li T. Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit. Environ Pollut. 2021;288:117793. doi: 10.1016/j.envpol.2021.117793.

Xu JR, Leslie JF. A genetic map of Gibberella fujikuroi mating population A (Fusarium moniliforme). Genetics. 1996;143(1):175-189.

Xu J-R, Yan K, Dickman MB, Leslie JF. Electrophoretic karyotypes distinguish the biological species of Gibberella fujikuroi (Fusarium section Liseola). Mol Plant-Microbe Interact. 1995;8:74-84. doi: 10.1094/MPMI-8-0074.

Yan H, Zhou Z, Shim WB. Two regulators of G-protein signaling (RGS) proteins FlbA1 and FlbA2 differentially regulate fumonisin B1 biosynthesis in Fusarium verticillioides. Curr Genet. 2021;67(2):305-15. doi: 10.1007/s00294-020-01140-5.

Yang X, Zhao S, Liu B, Gao Y, Hu C, Li W, Yang Y, Li G, Wang L, et al. Bt maize can provide non-chemical pest control and enhance food safety in China. Plant Biotechnol J. 2022; 21(2):391-404. doi: 10.1111/pbi.13960.

Yilmaz N, Sandoval-Denis M, Lombard L, Visagie CM, Wingfield BD, Crous PW. Redefining species limits in the Fusarium fujikuroi species complex. Persoonia. 2021;46:129-62. doi: 10.3767/persoonia.2021.46.05.

Yu S, Jia B, Liu N, Yu D, Zhang S, Wu A. Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. Sci Total Environ. 2021;787:147405. doi: 10.1016/j.scitotenv.2021.147405.

Yu W-Y, LIN M, Yan H-J, Wang J, Zhang S, Lu G, Wang Z, Shim W-B. The peroxisomal matrix shuttling receptor Pex5 plays a role in FB1 production and virulence in Fusarium verticillioides. J Integrat Agricult. 2022;21(10):2957-72. doi: 10.1016/j.jia.2022.07.044.

Yurchenko EG, Savchuk NV, Porotikova EV, Vinogradova SV. First report of grapevine (Vitis sp.) cluster blight caused by Fusarium proliferatum in Russia. Plant Dis. 2020;104:991 doi: 10.1094/PDIS-05-19-0938-PDN.

Zhao L, Wei X, Zheng T, Gou Y-N, Wang J, Deng J-X, Li M-J. Evaluation of pathogenic Fusarium spp. associated with soybean seed (Glycine max) in Hubei Province, China. Plant Dis. 2022;106(12):3178-86. doi: 10.1094/pdis-12-21-2793-re.

Zhou Z, Yan H, Kim MS, Shim WB. Distinct function of mediator subunits in fungal development, stress response, and secondary metabolism in maize pathogen Fusarium verticillioides. Phytopathology. 2022;112(8):1730-38. doi: 10.1094/PHYTO-12-21-0495-R.

Zhu Y, Abdelraheem A, Sanogo S, Wedegaertner T, Nichols R, Zhang JF. First report of cotton (Gossypium) wilt caused by Fusarium proliferatum in New Mexico, U.S.A. Plant Dis. 2019;103(10):2679. doi: 10.1094/PDIS-04-19-0713-PDN.

Zidan L, Jawdat D, Naffaa W. Morphology, pathogenicity, and molecular identification of some Fusarium species within the Gibberella fujikuroi species complex from wheat in Syria. Curr Res Environ Appl Mycol (J Fungal Biol). 2020;10(1):156-66. doi: 10.5943/cream/10/1/16.




DOI: http://dx.doi.org/10.24855/biosfera.v16i3.944

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"