REMOTE MONITORING OF THE THERMAL CONDITION OF UNDERLYING SURFACE UNDER THE CONDITIONS OF ANTHROPOGENIC TRANSFORMATION

А.А. Карсаков, Е.И. Пономарёв

Abstract


Reported in the present paper is a study of the thermal condition of a Northern Siberian ecosystem in summer under anthropogenic impacts manifested as anomalies of mean-field underlying surface temperature. The study made use of multispectral, including the infrared (IR) range, images generated by the satellite system Landsat-7, and -8/ETM+/OLI/TIRS (Enhanced Thematic Mapper Plus / Operational Land Imager / Thermal Infrared Sensor) for the area impacted by the developing infrastructure of the oil-and-gas bearing basin in the south of the Taymyr Peninsular (Krasnoyarsk Region, the Tagul oil-and-gas field). A preliminary analysis of the spectral characteristics of the objects under study used a composite satellite signal in the channels λ = 1.560–1.660 µм, λ = 0.845–0.885 µм and λ = 0.63060.680 µm and the spectral ranges of the NDVI index of vegetation. The analysis made it possible to distinguish natural intact and anthropogenically impacted areas (of different impact factors). Each such factor was analyzed with regard to its thermal condition assessed by calculating the Land Surface Temperature (LST) in comparison with data related to the intact background and with long-term series of meteorological data on the ground-air temperature. A correlation ((R2=0,35, p<0,05) has been found between LST values and air temperature in summertime of 2010–2022 under increasing anthropogenic impact on vegetation and soil cover. Such changes may be used as a deciphering indicator for controlling the degree of the anthropogenic transformation of an ecosystem. The relative deviations of LST values for the plots under anthropogenic transformation were higher by ~5–12% than the background values. Since the onset of the active infrastructure development, regular decreases in NDVI values related to transformed areas were occurring, and the mean LST values shifted towards higher estimates. The relative deviations from the background values amounted to ~9–26% for NDVI и 18–26% for LST.

Keywords


multizonal satellite images, anthropogenic transformation, mean-field underlying surface temperature, oil-and-gas industry, Land Surface Temperature (LST)


Как процитировать материал

References


Горный ВИ, Киселев АВ, Крицук СГ, Латыпов ИШ, Тронин АА. Спутниковое картирование тепловой реакции подстилающей поверхности Северной Евразии на изменение климата. Современные проблемы дистанционного зондирования Земли из космоса. 2021;18(6):155-64.

Горный ВИ, Крицук СГ, Латыпов ИШ, Манвелова АБ, Тронин АА. Спутниковое картирование риска перегрева городского воздуха (на примере г. Хельсинки, Финляндия). Современные проблемы дистанционного зондирования Земли из космоса. 2022;19(3):23–34.

Лупян ЕА, Лозин ДВ, Балашов ИВ, Барталев СА, Стыценко ФВ. Исследование зависимости степени повреждений лесов пожарами от интенсивности горения по данным спутникового мониторинга. Современные проблемы дистанционного зондирования Земли из космоса. 2022;(3):217-32.

Пономарева ТВ, Пономарев ЕИ, Литвинцев КЮ, Финников КА, Якимов НД. Тепловое состояние нарушенных почв в криолитозоне Сибири на основе дистанционных данных и численного моделирования. Вычислительные технологии. 2022;(3):16-35.

Соколов ДА, Андроханов ВА, Абакумов ЕВ. Почвообразование в техногенных ландшафтах: тренды, результаты и отражение в современных классификациях (обзор). Вестник Томского государственного университета. Биология. 2021;(56):6–32.

Сультсон СМ, Пономарев ЕИ, Швецов ЕГ, Третьяков ПД, Горошко АА, Кулакова НН, Михайлов ПВ. Применение дистанционного зондирования для прогноза нарушений темнохвойных лесов после вспышки численности сибирского шелкопряда. Биосфера. 2023;15(1):21-30.

Трофимова ИЕ. Районирование Западно-Сибирской равнины по термическому режиму почв. География и природные ресурсы. 2015;(3):27-38.

Gornyi VI, Kiselev AV, Kricuk SG, Latypov ISH, Tronin AA. [Satellite mapping of the thermal response of ecosystems of Northern Eurasia to climate change]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2021;18(6):155-64. (In Russ.)

Gornyi VI, Kritsuk SG, Latipov ISh, Manvelova AB, Tronin AA. [Satellite mapping of urban air overheating risk (by the example of Helsinki, Finland)]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2022;19(3):23-34. (In Russ.)

Lupian EA, Lozin DV, Balashov IV, Bartalev SA, Stytsenko FV. [Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2022;(3):217-32. (In Russ.)

Ponomareva TV, Litvintsev KY, Finnikov KA, Yakimov ND, Sentyabov AV, Ponomarev EI. Soil temperature in disturbed ecosystems of Central Siberia: remote sensing data and numerical simulation. Forests. 2021;12(8):994.

Sokolov DA, Androkhanov VA, Abakumov EV. Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (review). Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya. 2021;(56):6-32.

Sultson SM, Ponomarev EI, Shvetsov EG, Tretyakov PD, Goroshko AA, Kulakova NN, Mikhaylov PV. [Using remote sensing for forecasting damage to dark coniferous forests after Siberian silkmoth outbreak]. Biosfera. 2023;15(1):21-30. (In Russ.)

Trofimova IYe. Zoning of the West Siberian Plain according to the thermal regime of soils. Geografiya i Prirodnye Resursy. 2015;(3):27-38. (In Russ.)

Flood N. Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: A study in the Australian landscape. Remote Sens. 2014;(6):7952-70.

Melillo JM, Terese R, Gary WY. Climate Change Impacts in the United States. The Third National Climate Assessment. U.S. Global Change Research Program. 2014: 841.

Orgogozo L, Prokushkin AS, Pokrovsky OS, Grenier C, Quintard M, Viers J, Audry S. Water and energy transfer modeling in a permafrost dominated, forested catchment of Central Siberia: the key role of rooting depth. Permafrost and Periglacial Process. 2019;(30):75-89.

Ponomareva TV, Ponomarev EI, Litvincev KYU, Finnikov KA, Yakimov ND. Thermal state of disturbed soils in the permafrost zone of Siberia according the remote data and numerical simulation. Forests. 2022;(3):16-35.

Warrens J. Cohen's kappa is a weighted average. Statist Methodol.2011;8(6):473-84.

Yakimov ND. Ponomarev EI, Ponomareva TV. Satellite data in thermal range for natural and technogenic ecosystems monitoring. E3S Web of Conferences. 2021;(333):6 p. doi: 10.1051/e3sconf/202133302017




DOI: http://dx.doi.org/10.24855/biosfera.v16i1.890

EDN: https://www.elibrary.ru/item.asp?edn=GCBBBI

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"