MICROSCOPIC EXAMINATION AND 16S METABARCODING FOR COMPARATIVE ANALYSIS OF CYANOBACTERIA COMMUNITY STRUCTURE IN A PLAINLAND WATER STORAGE BASIN

М.В. Уманская, М.Ю. Горбунов, Е.С. Краснова, Н.Г. Тарасова

Abstract


Light microscopy and 16S metabarcoding was used to determine the composition and structure of cyanobacteria community in a bay of a major plainland water storage basing and neighboring water area. Both methods suggest that the core of the community is formed by representatives of the families Aphanizomenonaceae, Prochlorococcaceae and Microcystistaceae, the dominant species belonging to the Aphanizomenon-Dolichospermum complex, which are typical for the initial stages of cyanobacteria blooming in the Volga water storage basins cascade. A satisfactory similarity between the dominant complex structures determined using the morphological and the molecular genetic approaches has been found at the family and order levels. There are however noticeable differences at the genus and species levels and among minor species. Despite that the identification of the operative taxonomic units (OTU) and reliably described cyanobacteria species was possible in far not every case, the values of variability indexes calculated using microscopy and metabarcoding data were similar and, thus, OTUs generally correspond to species distinguished morphologically. The causes of the discrepancy between the results obtained using the two methods are discussed, including peculiarities of OUT discrimination algorithms, differences copy numbers of the ribosomal operon and differences in chromosome numbers in the cells of cyanobacteria of different types. For of all these reasons, the number of sequences defined by metabarcoding is not a direct analogue of cells number or amount and thus should be regarded as an independent characteristic of a community.

Keywords


plankton, cyanobacteria, Kuybyshev water storage basin, the river Usa, microscopic assessment, metabarcoding


Как процитировать материал

References


Голлербах ММ, Косинская ЕК, Полянский ВИ. Синезеленые водоросли. Определитель пресноводных водорослей СССР. Т. 2. М.: Советская наука,1953.

Горохова ОГ. Состав и структура сообществ фитопланктона Усинского залива Куйбышевского водохранилища в период «цветения» воды. Известия СНЦ РАН. 2016;18(5):122-30.

Горохова ОГ. Состав и структура альгофлоры реки Уса и её притоков (бассейн Куйбышевского водохранилища). Самарская Лука: проблемы региональной и глобальной экологии. 2019;28(1):27-39.

Мордухай-Болтовской ФД, ред. Методика изучения биогеоценозов внутренних водоемов. М.: Наука, 1975.

Тарасова НГ. Состав, сезонная динамика и инвазийные виды фитопланктона Куйбышевского водохранилища (диссертация). Тольятти: ИЭВБ РАН; 2005.

Тарасова НГ, Уманская МВ. Видовой состав и эколого-географическая характеристика альгофлоры планктона реки Уса (Самарская область). Фиторазнообразие Восточной Европы. 2021;15(4):115-35.

Уманская МВ, Быкова СВ, Горбунов МЮ, Краснова ЕС, Тарасова НГ. Трансформация одноклеточного планктона в системе река–залив–равнинное водохранилище в начальной фазе цианобактериального цветения. Известия СНЦ РАН. 2021;23(5):144-51.

Gollerbakh MM, Kosinskaya EK, Polyansky VI. Sinezelenye Vodorosli. Opredelitel Presnovodnykh Vodorosley SSSR T. 2 [Blue-Green Algae. Key to Freshwater Algae of the USSR. Vol.2, Moscow.: Sovetskaya Nauka; 1953. (In Russ.)

Gorokhova OG. [Composition and structure of algoflora Usa river and its tributaries (Basin of the Kuibyshev reservoir)]. Izvestiya SNT RAN. 2016;18(5):122-30. (In Russ.)

Gorokhova OG. [Composition and structure of algoflora Usa river and its tributaries (Basin of the Kuibyshev reservoir)]. Samarskaya Luka: Problems of Regional and Global Ecology. 2019;28(1):27-39. (In Russ.)

Mordukhai-Boltovskoy FD, ed. Metodika Izucheniya Biogeotsenozov Vnutrennikh Vodoyomov [Methodology for Studying the Biogeocenoses of Inland Water Bodies]. Мoscow.: Nauka; 1975. (In Russ.)

Tarasova NG. [Composition, Seasonal Dynamics and Invasive Species of Phytoplankton of the Kuibyshev Reservoir]. PhD Theses. Togliatti: IEVB RAN; 2005. (In Russ.)

Tarasova NG, Umanskaya MV. [Species composition and ecological and geographical characteristics of algoflora of plankton of the Usa river (Samara region)]. Fitoraznoobraziye Vostochnoy Yevropy. 2021;15(4):115-35. (In Russ.)

Umanskaya MV, Bykova SV, Gorbunov MYu, Krasnova ES, Tarasova NG. [Unicellular plankton transformation in the river-bay-reservoir system in the initial phase of cyanobacterial bloom]. Izvestiya SNT RAN. 2021;23(5):144-51. (In Russ.)

Abad D, Albaina A, Aguirre M, Laza-Martínez A, Uriarte I, Iriarte A, Vilatte F, Estonba A. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Marine Biol. 2016; 163:1-13.

Albrecht M, Pröschold T, Schumann R. Identification of cyanobacteria in a Eetrophic coastal lagoon on the Southern Baltic Coast. Front Microbiol. 2017;8:923.

Averina S, Polyakova E, Senatskaya E, Pinevich A. A new cyanobacterial genus Altericista and three species, A. lacusladogae sp. nov., A. violacea sp. nov., and A. variichlora sp. nov., described using a polyphasic approach. J Phycol. 2021; 57(5):1517-29.

Callieri C. Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. J Limnol. 2010;69(2):257-77.

Callieri C, Cronberg G, Stockner JG. Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. In: Whitton B. (eds). Ecology of Cyanobacteria II. Springer, Dordrecht; 2012. P. 229-69.

Dreher TW, Davis II EW, Mueller RS. Complete genomes derived by directly sequencing freshwater bloom populations emphasize the significance of the genus level ADA clade within the Nostocales. Harmful Algae. 2021;103:102005.

Edgar R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996-8.

Engene N, Gerwick WH. Intra-genomic 16S rRNA gene heterogeneity in cyanobacterial genomes. Fottea. 2011;11(1):17-24.

Engene N, Tronholm A, Paul VJ. Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). J Phycol. 2018;54(4):435-46.

Esenkulova S, Sutherland BJ, Tabata A, Haigh N, Pearce CM, Miller KM. Comparing metabarcoding and morphological approaches to identify phytoplankton taxa associated with harmful algal blooms. Facets. 2020; 5(1):784-811.

Griese M, Lange C, Soppa J. Ploidy in cyanobacteria. FEMS Microbiol Lett. 2011;323:124-31.

Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5(10):1571-79.

Kolmonen E, Sivonen K, Rapala J, Haukka K. Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat Microbial Ecol. 2004;36(3):201-11.

Komárek J. Cyanoprocaryota 3. Teil: Heterocytous genera. Süßwasserflora von Mitteleuropa. 2013;Bd.19/3.

Komárek J. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur J Phycol. 2016;51(3):346-53.

Komárek J, Anagnostidis K. Modern approach to the classification system of Cyanophytes 4-Nostocales. Algol Stud Arch Hydrobiologie. 1989;56(Suppl):247-345

Komárek J, Anagnostidis K. Cyanoprocaryota 1. Teil: Chroococcales. Süßwasserflora von Mitteleuropa. 1999; Bd.19/1.

Komárek J, Anagnostidis K. Cyanoprocaryota 2. Teil: Oscillatoriales. Süßwasserflora von Mitteleuropa. 2005; Bd.19/2.

Komárek J, Johansen JR, Šmarda J, Strunecký O. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea. 2020;20(2):171-91.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9.

Lee E, Ryan UM, Monis P, McGregor GB, Bath A, Gordon C, Paparini A. Polyphasic identification of cyanobacterial isolates from Australia. Water Res. 2014;59:248-261.

Li H, Alsanea A, Barber M, Goel R. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake Sci Total Environ. 2019;661:465-480.

Li X, Huo S, Xi B. Updating the resolution for 16S rRNA OTUs clustering reveals the cryptic cyanobacterial genus and species. Ecol Indic. 2020;117:106695.

Li XC, Huo S, Zhang J, Ma C, Xiao Z, Zhang H, Xi B, Xia X. Metabarcoding reveals a more complex cyanobacterial community than morphological identification. Ecol Indic. 2019;107: 105653.

MacKeigan PW, Garner RE, Monchamp MÈ, Walsh DA, Onana VE, Kraemer SA, Pick FR, Beisner BE, Agbeti MD, da Costa NB, Shapiro BJ, Gregory-Eaves I. Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae. 2022;113:102187.

Paerl HW, Paul VJ. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 2012;46:1349-63.

Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823-9.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41(D1):D590-6.

Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1-61.

Salazar VW, Tschoeke DA, Swings J, Cosenza CA, Mattoso M, Thompson CC, Thompson FL. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol. 2020;22(11):4557-70.

Schirrmeister BE, Dalquen DA, Anisimova M, Bagheri HC. Gene copy number variation and its significance in cyanobacterial phylogeny. BMC Microbiol. 2012;12:177.

Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152-5.

Strunecký O, Ivanova AP, Mareš J. An updated classification of cyano-bacterial orders and families based on phylogenomic and polyphasic analysis. J Phycol. 2023;59:12-51.

Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Liu Y, Day JG. Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol. 2002;52:1577-95.

Tapolczai K, Keck F, Bouchez A, Rimet F, Kahlert M, Vasselon V. Diatom DNA metabarcoding for biomonitoring: strategies to avoid major taxonomical and bioinformatical biases limiting molecular indices capacities. Front Ecol Evol. 2019;7:409. 10.3389/fevo.2019.00409

Wilmotte A, Herdman M. Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Bergey's Manual of Systematics of Archaea and Bacteria. Hoboken, NJ: Wiley, 2015. p. 1-9.

Woodhouse JN, Kinsela AS, Collins RN, Bowling LC, Honeyman GL, Holliday JK, Neilan BA. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 2016;10:1337-51.

Zwart, G., Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microbial Ecol. 2002;28(2):141-55.




DOI: http://dx.doi.org/10.24855/biosfera.v15i3.822

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"