MODELING THE AVERAGE HEIGHT OF STANDS OF TWO-NEEDLED PINES (SUBGENUS PINUS L.) IN CLIMATIC GRADIENTS OF EURASIA

В.А. Усольцев, И.С. Цепордей

Abstract


Due to climate changes and the attempts to stabilize it by including the biomass of managed forests in the carbon cycle, the role of easily measurable indicators that adequately reflect the biological productivity of stands is increasing. It is known that, among taxation indicators, stand height correlates most tightly with productivity. However, modeling the height of a stand in climatic gradients is being carried out currently only at regional levels within narrow ranges of climatic variables, which are taken into account separately while ignoring their combined effect as well as the age and cenotic structure of stands. As a result, the apparent correlations between stand heights and climatic variables are weak or absent. We attempted to find out how much the ability of climatic variables to explain the variation in the average height of stands is increased when the range of climatic variables is expanded up to the transcontinental level. We used the results of 2390 measurements of the average height of natural stands and plantations of two-needled pines (subgenus Pinus L.) obtained from the original authors’ database. A model of changes in the average tree height over geographically distributed temperatures and precipitation levels in Eurasia has been developed, its significance level corresponding to p < 0.001. For the first time, the effect of the Liebig-Shelford law of limiting factor was revealed at the transcontinental level: in the regions of a sufficient moisture, the lack of heat is the limiting factor of stand growth, whereas upon the transition to the regions of insufficient moisture, the limiting factor changes to heat excess. It was found that taxation indicators and climatic variables explain 86% and about 11%, respectively, of stand height variability. Anything else being equal, the average height of pine plantations is 5% above that of the natural stands. By applying the principle of space-for-time substitution to the model, we showed that, with an expected increase in January temperature by 1 °C, the average height of stands can increase by 1–3% in conditions of sufficient moisture and decrease by 0.5–1.6% in conditions of insufficient moisture. Accordingly, in the case of a decrease in average annual precipitation by 20 mm, the average height may increase by 0.9–2.9% in the areas of insufficient heat supply and decrease by 0.6–1.7% in the areas of sufficient heat supply.

Keywords


tree stand height, Eichhorn law, the Liebig-Shelford law of limiting factor, temperature and precipitation gradients, the principle of space-for-time substitution.


Как процитировать материал

References


Бубырь ДС, Клячкин ВН, Карпунина ИН. Использование бинарных переменных при регрессионном моделировании состояния технического объекта. Изв Самарск научн центра РАН. 2014;16(2):371-3.

Дрейпер Н, Смит Г. Прикладной регрессионный анализ. М.: Статистика; 1973.

Загреев ВВ, Брук БЛ, Загреева АИ. Единые бонитировочные шкалы для оценки продуктивности сосновых и еловых насаждений. Современное лесоустройство и таксация леса. Сб. научных трудов ВНИИЛМ. 1974;4:126-57.

Леонтьев НЛ. Техника статистических вычислений. М.: Лесная промышленность; 1966.

Розенберг ГС, Рянский ФН, Лазарева НВ и др. Общая и прикладная экология. Самара-Тольятти: Изд-во Самар. гос. эконом. ун-та; 2016.

Рубцов ВИ, Новосельцева АИ, Попов ВК и др. Биологическая продуктивность сосны в лесостепной зоне. М.: Наука; 1976.

Свалов НН. Методы составления таблиц классов бонитета. Лесное хозяйство. 1967;6:46-9.

Свалов НН. Прогнозирование роста древостоев. Методы учета и прогноза лесных ресурсов. Сер. «Лесоведение и лесоводство». Т. 2. М.: ВИНИТИ; 1978.

Bubyr DS, Kliachkin VN, Karpunina IN. The use of binary variables in regression modeling of the state of a technical object. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk. 2014;16(2):371-3. (In Russ.)

Drаper N, Smith G. Prikladnoy Regressionnyi Analiz. Moscow: Statistika; 1973. (In Russ.)

Zagreyev VV, Brook BL, Zagreyeva AI. Unified scales of site indices for assessing the productivity of pine and spruce plantations. Sovremennoe Lesoustroistvo i Taksatsiya Lesa. 1974;4:126-57. (In Russ.)

Leontyev NL. Tekhnika Statisticheskikh Vychisleniy. Moscow: Lesnaya Promyshlennost; 1966. (In Russ.)

Rozenberg GS, Rianskiy FN, Lazareva NV et al. Obshchaya i Prikladnaya Ekologia. Samara-Togliatti: Izdatelstvo Samarskogo Gosudarstvennogo Ekonomicheskogo Universiteta; 2016. (In Russ.)

Rubtsov VI, Novoseltseva AI, Popov V et al. Biologicheskaya Produktivnost Sosny v Lesostepnoy Zone. Moscow: Nauka; 1976. (In Russ.)

Svalov NN. Methods of compiling tables of site index classes. Lesnoye Khoziaystvo. 1967;6:46-9. (In Russ.)

Svalov NN. Forecasting the growth of stands. Methods of estimating and forecasting of forest resources. In: Seriya Lesovedenie i Lesovodstvo. Tom 2. Moscow: VINITI; 1978. (In Russ.)

Assman E. Die Bedeutung des erweiterten Eichhorn’schen Gesetzes für die Kontrolle von Fichten Ertragstafeln. Forstwissenschaftl Centralblt. 1955;74:321-30.

Babst F, Poulter B, Trouet V et al. Site-and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr. 2013; 22:706-17.

Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J Forest Res. 1972;2(1):49-53.

Brecka AFJ, Shahi C, Chen HYH. Climate change impacts on boreal forest timber supply. Forest Policy Econ. 2018;92:11-21.

Chytrý M, Hennekens SM, Jimenez-Alfar B et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci. 2016;19:173-80.

Cienciala E, Altman J, Dolezal J et al. Increased spruce tree growth in Central Europe since 1960s. Sci Total Environ. 2018;619-620:1637-47.

Devi N, Hagedorn F, Moiseev P et al. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Change Biol. 2008;14:1581-91.

Dietrich R, Bell FW, Silva LCR et al. Climatic sensitivity, water-use efficiency, and growth decline in boreal jack pine (Pinus banksiana) forests in Northern Ontario. J Geophys Res Biogeosci. 2016;121:2761-74.

Eichhorn F. Ertragstafeln für die Weißtanne. Berlin; 1902.

Eichhorn F. Beziehungen zwishen Bestandeshöhe und Bestandesmasse. Allg Forst und Jagdz. 1904;80:45-9.

Freese F. Linear regression methods for forest research. USDA Forest Service. Res. Paper FPL 17. Madison; 1964.

Gerhardt E. Ȕber Bestandes-Wachstumsgesetze und ihre Anwendung zur Aufstellung von Ertragstafeln. Allg Forst und Jagdz. 1909;85:117-28.

Gerhardt E. Zur Ertragstafelfrage: Eine dreiteilige Fichtenertragstafel. Allg Forst und Jagdz. 1928;104:377-86.

Hunter MO, Keller M, Victoria D, Morton DC. Tree height and tropical forest biomass estimation. Biogeosciences. 2013;10:8385-99.

Kambach S, Sabatini FM, Attorre F et al. Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe. Nat Commun. 2023;14:712.

Kremenetski CV, Sulerzhitsky LD, Hantemirov R. Holocene history of the northern range limits of some trees and shrubs in Russia. Arct Antarct Alp Res. 1998;30:317-33.

Magin R. Möglichkeiten der dynamischen Bonitierung im Hinblick auf die künftige Einheitsbewertung. Allg Forst Zeitschr. 1955;10:122-4.

Martin-Benito D, Pederson N, Köse N et al. Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus. Glob Ecol Biogeogr. 2018;27:1314-25.

Mascaro J, Litton CM, Hughes RF et al. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand times yes. Biol J Linn Soc Lond. 2014;111:230-3.

Messaoud Y, Reid A, Tchebakova NM et al. The historical complexity of tree height growth dynamic associated with climate change in Western North America. Forests. 2022;13:Article 738.

Meunier F, Moorthy SMK, Peaucelle M et al. Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2). Geosci Model Dev. 2022;15(12):4783-803.

Miesner T, Herzschuh U, Pestryakova LA et al. Forest structure and individual tree inventories of northeastern Siberia along climatic gradients. Earth Syst Sci Data. 2022;14:5695-716.

Neuville R, Bates JS, Jonard F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning. Remote Sens. 2021;13:Article 352.

O’Brien MJ, Engelbrecht BMJ, Joswig J et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J Appl Ecol. 2017;54:1669-86.

Sangines de Carcer P, Vitasse Y, Penuelas J et al. Vapor-pressure deficit and extreme climatic variables limit tree growth. Glob Change Biol. 2018;24:1108-22.

Simard M, Pinto N, Fisher JB et al. Mapping forest canopy height globally with space borne lidar. J Geophys Res. 2011;116:G04021.

Sothe C, Gonsamo A, Lourenço RB et al. Spatially continuous mapping of forest canopy height in Canada by combining GEDI and ICESat-2 with PALSAR and Sentinel. Remote Sens. 2022;14:5158.

Thomasius H. Untersuchungen über die Brauchbarkeit einiger Wachstumsgrößen von Bäumen und Beständen für die quantitative Standortsbeurteilung. Arch Forstwes. 1963;12(12):1267-323.

Usoltsev VA. Forest Biomass and Primary Production Database for Eurasia: Digital Version. The third edition, enlarged. Yekaterinburg: Ural State Forest Engineering University, 2020. Available at: https://elar.usfeu.ru/bitstream/123456789/9648/1/Base_v2.xlsx

Usoltsev VА, Merganičová K, Konôpka B et al. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Cent Eur For J. 2019;65:166-79.

Usoltsev V, Zukow W, Tsepordey I. Climatically determined spatial and temporal changes in the biomass of Pinus sp. of Eurasia in the context of the law of the limiting factor. Ecol Quest. 2022;33(1):15-23.

Wilschut RA, De Long JR, Geisen S et al. Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis. Proc R Soc B. 2022;289:20221178.

World Weather Maps; 2007. Available at: https://www.mapsofworld.com/referrals/weather.

Yang W, Kondoh A. Evaluation of «the Simard et al. 2011 Global Canopy Height Map» in boreal forests. Remote Sens. 2020;12:1114.

Zeng WS. Developing tree biomass models for eight major tree species in China. In: Biomass volume estimation and valorization for energy. Chapter 1. Intech Publ.;2017;3-21.

Zeng WS, Duo HR, Lei XD et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. Eur J Forest Res. 2017:136;233-49.




DOI: http://dx.doi.org/10.24855/biosfera.v15i2.804

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"