USING REMOTE SENSING FOR FORECASTING DAMAGE TO DARK CONIFEROUS FORESTS AFTER SIBERIAN SILKMOTH OUTBREAK

С.М. Сультсон, Е.И. Пономарев, Е.Г. Швецов, П.Д. Третьяков, А.А. Горошко, Н.Н. Кулакова, П.В. Михайлов

Abstract


The conditions of specific plots of a dark coniferous forest in a mountain taiga region of Siberia in 2018?2020 after an outbreak of Siberian silkmoth Dendrolimus sibiricus Tschetverikov (Lepidoptera: Lasiocampidae) have been analyzed using Landsat and Terra/MODIS remote sensing data. The degree of defoliation-caused damage to forest stand was evaluated based on deviations of the vegetation index NDVI from the mean value found in undisturbed plots. Correlations between damage degree, meteorological parameters, and forest inventory and orographic characteristics of the territory under study were determined. A solution tree has been constructed for forecasting the possible degrees of damage to dark coniferous forests under defined conditions, which provides for estimating the possible degrees of damage to mountain taiga dark coniferous forests of Siberia at different stages of Siberian silkmoth outbreak development.

Keywords


dark coniferous taiga, Siberian silkmoth, remote sensing data, forest stand damage degree, vegetation conditions.


Как процитировать материал

References


1. Барталев СА, Егоров ВА, Жарко ВО, Лупян ЕА, Плотников ДЕ, Хвостиков СА, Шабанов НВ. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН; 2016.

2. Бех ИА, Данченко АМ. Параметры устойчивости темнохвойно-кедровых лесов равнинной тайги Западной Сибири. Вестн Томск гос ун-та. Биол. 2008;1(2):57-62.

3. Воронцов АИ. Патология леса. М.: Лесная промышленность;1978.

4. Гродницкий ДЛ, Разнобарский ВГ, Солдатов ВВ, Ремарчук НП. Деградация древостоев в таежных шелкопрядниках. Сиб экол журн. (2002);9(1):3-12.

5. Ермоленко ПМ, Овчинникова НФ. Устойчивость темнохвойных лесов Западного Саяна. В кн.: Методы оценки состояния и устойчивости лесных экосистем. Красноярск; 1999:57-8.

6. Ильинский АИ. Непарный шелкопряд и меры борьбы с ним. М.: Гослесбумиздат; 1959.

7. Исаев АС, Ряполов ВЯ. Анализ ландшафтно-экологической приуроченности очагов сибирского шелкопряда с применением аэрокосмической съемки. В кн.: Исследование таежных ландшафтов дистанционными методами. Новосибирск: Наука;1979. С. 152-67.

8. Кириченко НИ, Баранчиков ЮН. Кормовые нормы гусениц сибирского шелкопряда на хвойных породах Сибири. Сиб экол журн. 2008;(5):709-16.

9. Колтунов ЕВ, Бахвалов СА, Мартемьянов ВВ. Факторы и экологические механизмы популяционной динамики лесных насекомых-филлофагов. Новосибирск: Изд-во СО РАН; 2010.

10. Кондаков ЮП. Закономерности массовых размножений сибирского шелкопряда. В кн.: Экология популяций лесных животных Сибири. Новосибирск: Наука; 1974. С. 206-65.

11. Куприянова ТМ. Обзор представлений об устойчивости физико-географических систем. В кн.: Устойчивость геосистем. М.: Наука; 1983. С. 7-13.

12. Матюк ИС. Устойчивость лесонасаждений. М.: Лесная промышленность; 1983.

13. Распопов ПМ. Массовые размножения хвое- и листогрызущих насекомых в Челябинской области с 1949 по 1973 г. и меры борьбы с ними. В кн.: Биологические исследования в Ильменском заповеднике. Свердловск: УНЦ АН СССР; 1973. С. 83-97.

14. Ханисламов МГ. Динамика численности непарного шелкопряда в связи с условием питания и погоды. Первая межвузовская конференция по защите леса: тез. докл. М.: Изд. МВУ СССР и МЛТИ; 1958. С. 11-2.

1. Bartalev SA, Yegorov VA, Zharko VO, Lupian YeA, Plotnikov DYe, Khvostikov SA, Shabanov NV. Sputnikovoye Kartografirovaniye Rastitelnogo Pokrova Rossii. Moscow: IKI RAN; 2016. (In Russ.)

2. Bekh IA, Danchenko AM. [Stability parameters of dark-coniferous cedar forests of the plain taiga of West Siberia]. Vestnik Tomskogo Gosudarstvennogo Universiteta Biologiya. 2008;1(2):57-62. (In Russ.)

3. Vorontsov AI. Patologiya Lesa. Moscow: Lesnaya Promyshlennost; 1978. (In Russ.)

4. Grodnickiy DL, Raznobarskiy VG, Soldatov VV, Remarchuk NP. [Tree stand degradation in Siberian silk moth-affected forests]. Sibirskiy Ekologicheskiy Zhurnal. 2002;9(1):3-12. (In Russ.)

5. Yermolenko PM, Ovchinnikova NF. [Stability of dark coniferous forests of Western Sayan Mountains]. In: Metody Otsenki Sostoyaniya i Ustoychivosti Lesnyh Ekosistem. Krasnoyarsk; 1999. P. 57-8. (In Russ.)

6. Ilyinskiy AI. Neparnyi Shelkopriad i Mery Borby s Nim. Moscow: Goslesbumizdat; 1959. (In Russ.)

7. Isayev AS, Riapolov VYa. [Using aerospace photography for analysis of the association of Siberian silk moth foci with ecological landscapes]. In: Issledovaniye Tayozhnykh Landshaftov Distantsionnymi Metodami. Novosibirsk; Nauka; 1979. P. 152-67. (In Russ.)

8. Kirichenko NI, Baranchikov YuN. [Forage norms of Siberian silk moth larvae feeding on coniferous species of Siberia]. Sibirskiy Ekologicheskiy Zhurnal. 2008;(5):709-16. (In Russ.)

9. Koltunov YeV, Bakhvalov SA, Martemyanov VV. Faktory i Ekologicheskiye Mekhanizmy Populiatsionnoy Dinamiki Lesnyh Nasekomyh-Fillofagov. Novosibirsk: Izdatelstvo SO RAN; 2010. (In Russ.)

10. Kondakov YuP. [Regularities in Siberian silk moth outbreaks]. In: Ekologiya Populiatsiy Lesnykh Zhivotnykh Sibiri. Novosibirsk: Nauka;1974. P. 206-65. (In Russ.)

11. Kupriyanova TM. [A review of concepts related to physical-geography systems stability]. In: Ustoychivost Geosistem. Moscow: Nauka; 1983. P. 7-13. (In Russ.)

12. Matiuk IS. Ustoychivost Lesonasazhdeniy. Moscow: Lesnaya Promyshlennost; 1983. (In Russ.)

13. Raspopov PM. [Outbreaks of needles and leaves consuming insects in Chelyabinsk Oblast in 1949 through 1973 and measures taken against them]. In: Biologicheskiye Issledovaniya v Ilmenskom Zapovednike Sverdlovsk: UNTs AN SSSR; 1973. P. 83-97. (In Russ.)

14. Khanislamov MG. [Changes in spongy moth abundance related to nutritional and climatic conditions]. In: Pervaya Mezhvuzovskaya Konferentsiya po Zashchite Lesa Tezisy Dokladov. Moscow: Izdatelstvo MVU SSSR i MLTI; 1958. P. 11-2. (In Russ.)

15. Didan K, Munoz AB, Solano R, Huete A. MODIS Vegetation Index User’s Guide Version 3.00, June 2015 (Collection 6).

16. Gorbatenko VP et al. Effect of atmospheric circulation on temperature variations in Siberia. Atmos Ocean Opt. 2011;24(1):15-21.

17. Kharuk VI, Antamoshkina OA. Impact of silkmoth outbreak on taiga wildfires. Contemp Probl Ecol. 2017;10(5):556-62.

18. Kharuk VI, Demidko DA, Fedotova YeV, Dvinskaya ML et al. Spatial and temporal dynamics of Siberian silkmoth large-scale outbreak in dark-needle coniferous tree stands in Altai. Contemp Probl Ecol. 2016;9(6):711-20.

19. Kharuk VI, Im ST, Soldatov VV. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains. J Mountain Sci.2020;(17):1891-900.

20. Kharuk VI, Ranson KJ, Kozuhovskaya AG, Kondakov YP, Pestunov IA. NOAA/AVHRR satellite detection of Siberian silkmoth outbreaks in eastern Siberia. Int. J. Remote Sens. 2004;25(24):5543-55.

21. Knyazeva, SV, Koroleva NV, Eidlina SP, Sochilova YeN. Health of vegetation in the area of mass outbreaks of Siberian moth based on satellite data. Contemp Probl Ecol. 2019;12(7):743-52.

22. Kovalev A, Soukhovolsky V. Analysis of forest stand resistance to insect attack according to remote sensing data. Forests. 2021;12(9):1188.

23. Mattson WJ. Escalating anthropogenic stresses on forest ecosystems: forcing benign plant-insect interactions into new interaction trajectories. In: World Forest Congress. Finland; 1997. P. 1-6.

24. Niinemets Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecol Manag. 2010;260(10):1623-39.

25. Pavlov IN, Litovka YA, Golubev DV, Astapenko SA, Chromogin PV. New outbreak of Dendrolimus sibiricus Tschetv. in Siberia (2012–2017): monitoring, modeling and biological control. Contemp Probl Ecol. 2018;11(4):406-19.

26. Seidl R et. al. Forest disturbances under climate change. Nat Clim Chang. 2017;7(6):395-402.

27. Sultson SM, Goroshko AA, Mikhaylov PV, Demidko DA, Ponomarev EI, Verkhovets SV. Improving the monitoring system. In: Towards Early Detection and Prediction of the Siberian Moth Outbreaks in Eastern Siberia. Proceedings, 2021. P. 68.

28. Sultson SM, Goroshko AA, Verkhovets SV, Mikhaylov PV, Ivanov VA, Demidko DA, Kulakov SS. Orographic factors as a predictor of the spread of the Siberian silk moth outbreak in the mountainous southern taiga forests of Siberia. Land. 2021;10(2):1-16.

29. Tchebakova NM, Parfenova Ye, Soja AJ. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett. 2009;(4):045013.

30. Teshome DT, Zharare GE, Naidoo S. The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate. Front Plant Sci. 2020;(11):601009.

31. Zhirin VM, Knyazeva SV, Eydlina SP. Long-term dynamics of vegetation indices in dark coniferous forest after Siberian moth disturbance. Contemp Probl Ecol. 2016;9:834-43.




DOI: http://dx.doi.org/10.24855/biosfera.v15i1.790

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"