ROOT TO SHOOT BIOMASS RATIOS OF FOREST-FORMING SPECIES ALONG TEMPERATURE AND PRECIPITATION GRADIENTS IN EURASIA

В.А. Усольцев, И.С. Цепордей

Abstract


Due to the observed climatic shifts, the problem of correct estimates of the carbon sequestration capacity of forests and its possible temporal dynamics is being actualized. In plant ecology, tree root systems are the least studied. The purpose of this study was (a) to investigate, based on measurements carried out at 1782 sample plots, whether the effect of the law of the limiting factor is manifested when modeling the ratio of the belowground to the aboveground live biomass, i.e. the root-to-shoot ratio (R:S) of five forest-forming species in Eurasia as it relates to the geographically determined gradients of temperature and precipitation; (b) to show to what extent the climate-dependent models of R:S dependence on temperature and precipitation may be used to predict changes in R:S in temporal gradients based on the principle of space-for-time substitution and (c) to obtain the mean R:S values for forest-forming tree species (genuses) of Eurasia and perform their ranking. It has been established that, in cold regions, R:S increases with increasing precipitation, whereas upon transition to warm regions, one limiting factor (heat deficit) is replaced by another one (heat excess), and R:S dependence on precipitation changes to the opposite trend. In humid regions, R:S decreases with increasing temperature, whereas upon transition to dry conditions, one limiting factor (moisture excess) is replaced by another one (moisture deficit), and R:S begins to increase. The comparison of the above patterns with previously published ones, which relate to the aboveground biomass, suggest that they are directly opposite, i.e., the factors that limit the amount of the aboveground biomass are stimulatory for the R:S ratio, and vice versa. Our estimates of the typical R:S values for 24 Eurasian tree species range from 0.11 for dipterocarpus in Malaysia to 0.37 for ash in Europe.

Keywords


root:shoot biomass ratio, the principle of the limiting factor, the principle of space-for-time substitution, gradients of precipitation and winter temperatures in Eurasia


Как процитировать материал

References


1. Абражко МА. Пространственное распределение и динамика биомассы корней ели. В кн.: Факторы регуляции экосистем еловых лесов. Л.: Наука; 1983. С. 89-97.
2. Аткин АС. Масса корней сосны на гранитных интрузиях Казахского мелкосопочника. Вестн с-х науки Казахстана. 1978;6:82-6.
3. Баглай АН. Формирование корневых систем сосны в культурах южной части Усманского бора в зависимости от условий местопроизрастания. Автореф. канд. дисс. Киев; 1962.
4. Базилевич НИ, Родин ЛЕ. Запасы органического вещества в подземной сфере растительных сообществ суши Земли. В кн.: Методы изучения продуктивности корневых систем и организмов ризосферы (Международный симпозиум СССР). Л.: Наука; 1968. С. 3-7.
5. Бобкова КС, Тужилкина ВВ, Кузин СН. Углеродный цикл в еловых экосистемах северной тайги. Экология. 2006;1:23-31.
6. Борискина ЕМ. Взаимодействие корневых систем дуба и сосны с почвой. Труды Воронежского гос. заповедника. 1959;8:255-63.
7. Бычваров Д, Петков ПБ, Сидеров К. [К характеристике корневой системы дубовых насаждений в Восточных Родопах]. Горскостопанска Наука. 1976;13(2):3-8 (болг.).
8. Ведрова ЭФ, Шугалей ЛС, Стаканов ВД. Баланс углерода в естественных и нарушенных южнотаежных лесах Средней Сибири. География и природные ресурсы. 2002;4:92-9.
9. Верзунов АИ. Рост лиственницы и устойчивость культурных фитоценозов с ее господством на полугидроморфных почвах лесостепи Северного Казахстана. Экология. 1980;2:38-44.
10. Воронин ПЮ. Ежегодный фотосинтетический сток атмосферного углерода и NEP растительного покрова Северной Евразии. Докл АН РАН. 2006;408(6):842-4.
11. Голубятников ЛЛ, Денисенко ЕА. Влияние климатических изменений на растительный покров европейской России. Известия РАН. Сер географ. 2009;2:57-68.
12. Ермоленко ПМ, Ермоленко ЛГ. Высотно-поясные особенности роста кедра и пихты в Западном Саяне. В кн.: Формирование и продуктивность древостоев. Новосибирск: Наука; 1981. С. 19-53.
13. Заде ЛА. Основы нового подхода к анализу сложных систем и процессов принятия решений. В кн.: Математика сегодня (сборник переводных статей). М.: Знание; 1974. С. 5-49.
14. Заика ВЕ. Современное состояние теории роста. В кн.: Зотин АИ, Преснов ЕВ ред. Математическая биология развития. М.: Наука;1982. С. 40-49.
15. Залесов СВ, Аткина ЛИ, Абрамова ЛП, Луганский HA. Строение корневой системы растений сосны в ювенильном возрасте в условиях Южного Урала. Леса Урала и хозяйство в них. 2004;24:46-51.
16. Зябченко СС, Иванчиков АА. Зональные особенности формирования сосняков черничных Карелии и Кольского полуострова и динамика структуры растительной массы в них. В кн.: Формирование и продуктивность сосновых насаждений Карельской АССР и Мурманской области. Петрозаводск: Ин-т леса КФ АН СССР; 1978. С. 30-75.
17. Казарян ВО. Старение высших растений. М.: Наука; 1969.
18. Казимиров НИ, Волков АД, Зябченко СС и др. Обмен веществ и энергии в сосновых лесах Европейского Севера. Л.: Наука; 1977.
19. Каризуми Н. Определение биомассы корней в лесах путем отбора проб из почвенных блоков. В кн.: Методы изучения продуктивности корневых систем и организмов ризосферы (Международный симпозиум СССР). Л.: Наука; 1968. С. 79-86.
20. Крамер ПД, Козловский ТТ. Физиология древесных растений. М.: Лесная промышленность; 1983.
21. Кукарских ВВ. Что влияет на радиальный прирост деревьев в условиях сухого климата. В кн.: Экология в меняющемся мире: Материалы конф. молодых ученых, 24-28 апреля 2006 г. Екатеринбург: Академкнига; 2006. С. 120-2.
22. Лиепа ИЯ. Динамика древесных запасов: прогнозирование и экология. Рига: Зинатне; 1980.
23. Лиепа ИЯ. Единый метод таксации реакции древостоя на антропогенное воздействие. Лесоведение. 1985;(6):12-8.
24. Лир Х, Польстер Г, Фидлер Г-И. Физиология древесных растений. М.: Лесная пром-сть; 1974.
25. Мак-Лоун РР. Математическое моделирование – искусство применения математики. В кн.: Математическое моделирование. М.: Мир; 1979. С. 9-20.
26. Молчанов АА. Продуктивность органической массы в лесах различных зон. М.: Наука; 1971.
27. Москалюк ТА. Структура и продуктивность основных типов леса юга Магаданской области. Автореф. канд. дисс. Красноярск; 1984.
28. Одум Ю. Основы экологии. М.: Мир; 1975.
29. Орлов АЯ. Метод определения массы корней деревьев в лесу и возможности учета годичного прироста органической массы в толще лесной почвы. Лесоведение. 1967;1:64-70.
30. Оськина НВ. Почвенные условия и продуктивность фитомассы сосновых насаждений приокских террас в Московской области. Автореф. канд. дисс. М.; 1982.
31. Поликарпов НП. Формирование сосновых молодняков на концентрированных вырубках. М.: Изд-во АН СССР; 1962.
32. Рахтеенко ИН, Якушев БИ. Комплексный метод исследования корневых систем растений. В кн.: Методы изучения продуктивности корневых систем и организмов ризосферы (Международный симпозиум СССР). Л.: Наука; 1968. С. 174-8.
33. Розенберг ГС. Математическое моделирование фитоценотических систем. Бюллетень МОИП. Отд-ние биологии. 1980;85(2):79-88.
34. Розенберг ГС, Рянский ФН, Лазарева НВ и др. Общая и прикладная экология. Самара-Тольятти: Изд-во Самар. гос. эконом. ун-та; 2016.
35. Смолоногов ЕП. Лесообразовательный процесс и генетическая классификация типов леса. Леса Урала и хозяйство в них. 1995;18:43-58.
36. Терехов ГГ, Усольцев ВА. Морфоструктура насаждений и корненасыщенность ризосферы культур ели сибирской и вторичного лиственного древостоя на Среднем Урале как характеристика их конкурентных отношений. Хвойные бореальной зоны. 2010;27(3-4):330-5.
37. Толмачев АИ. Основы учения об ареалах: Введение в хорологию растений. Л.: Изд-во ЛГУ; 1962.
38. Усольцев ВА. Рост и структура фитомассы древостоев. Новосибирск: Наука; 1988.
39. Усольцев ВА. Биоэкологические аспекты таксации фитомассы деревьев. Екатеринбург: УрО РАН; 1997.
40. Усольцев ВА. Биологическая продуктивность лесов Северной Евразии: методы, база данных и ее приложения. Екатеринбург: УрО РАН; 2007.
41. Усольцев ВА. Фитомасса и первичная продукция лесов Евразии. Екатеринбург: УрО РАН; 2010.
42. Усольцев ВА. Биологическая продуктивность лесообразующих пород в климатических градиентах Евразии: К менеджменту биосферных функций лесов. Екатеринбург: УГЛТУ; 2016.
43. Усольцев ВА. В подвалах биосферы: Что мы знаем о первичной продукции корней деревьев? Эко-потенциал. 2018;4:24-77.
44. Усольцев ВА, Колчин КВ, Маленко АА. Смещения всеобщих аллометрических моделей при локальной оценке фитомассы деревьев лиственницы. Вестн Алтайск гос аграрн ун-та. 2017;4:85-90.
45. Усольцев ВА, Цепордей ИС. Климатические градиенты биомассы насаждений Quercus spp. на территории Евразии. Сибирский лесной журн. 2020;6:16-29.
46. Усольцев ВА, Ковязин ВФ, Цепордей ИС и др. Биомасса ассимиляционного аппарата лесов Евразии: коррекция методов эмпирического моделирования. Известия Санкт-Петербургской лесотехнической академии. 2020;232:50-78.
47. Усольцев ВА, Цепордей ИС, Азаренок МВ. Климатически обусловленные пространственные и темпоральные изменения биомассы рода Abies spp. Евразии в контексте закона лимитирующего фактора. Хвойные бореальной зоны. 2021;39(5):392-400.
48. Усольцев ВА, Цепордей ИС. Принцип пространственно-временнóго замещения в экологии и прогнозирование биомассы Picea spp. при изменении климата. Хвойные бореальной зоны. 2021;39(4):269-75.
49. Усольцев ВА, Цепордей ИС. Климатически обусловленные территориальные изменения фитомассы деревьев лесообразующих видов Евразии и их прогнозирование. Сибирский лесной журнал. 2021;6:72-90.
50. Усольцев ВА, Цепордей ИС, Норицин ДВ. Аллометрические модели для оценки биомассы корней лесообразующих родов Евразии дистанционными методами с учетом глобального потепления. Хвойные бореальной зоны. 2022;40(1):65-75.
51. Усольцев ВА, Цепордей ИС, Усольцев АВ. Прогнозирование биомассы кедровых сосен cеверной части Азии при изменении климата. Хвойные бореальной зоны. 2022;40(5). (принята в печать).
52. Усольцев ВА, Цепордей ИС, Норицин ДВ. Аллометрические модели биомассы деревьев лесообразующих пород Урала. Леса России и хозяйство в них. 2022;1:4-14.
53. Фонти МВ. Климатический сигнал в параметрах годичных колец (плотности древесины, анатомической структуре и изотопном составе) хвойных и лиственных видов деревьев в различных природно-климатических зонах Евразии. Автореф. докт. дисс. Красноярск; 2020.
54. Цельникер ЮЛ, Малкина ИС, Ковалев АГ, Чмора СН. Рост и газообмен СО2 у лесных деревьев. М.: Наука; 1993.
1. Abrazhko MA. [Spatial distribution and dynamics of spruce root biomass]. In: Faktory Regulyatsii Ekosistem Yelovykh Lesov [Factors of Regulation of Spruce Forest Ecosystems]. Leningrad: Nauka; 1983. P. 89-97. (in Russ.)
2. Atkin AS. [The mass of pine roots on granite intrusions of the Kazakh Low Hills]. Vestnik Selskokhoziaystvennoy Nauki Kazakhstana. 1978;6:82-6. (In Russ.)
3. Baglay AN. Formirovanie Kornevykh System Sosny v Kul’turakh Yuzhnoy Chasti Usmanskogo Bora. [Formation of Root Systems in Pine Plantations of the Southern Part of Usman Forest]. Abstract of PhD Thesis. Kiev; 1962. (In Russ.)
4. Bazilevich NI, Rodin LE. [Reserves of organic matter in the underground sphere of plant communities of the land of the Earth]. In: Metody Izucheniya Produktivnosti Kornevykh Sistem i Organizmov Rizosfery: Mezhdunarodnyi Symposium SSSR. [Methods of Studying the Productivity of Root Systems and Rhizosphere Organisms: International Symposium of the USSR]. Leningrad: Nauka; 1968. P. 3-7. (In Russ.)
5. Bobkova KS, Tuzhilkina VV, Kuzin SN. [Carbon cycle in spruce ecosystems of the Northern taiga]. Russ J Ecol. 2006;1:23-31. (In Russ. and Engl.)
6. Boriskina EM. [Interaction of oak and pine root systems with soil]. Trudy Voronezhskogo Gosudarstvennogo Zapovednika. 1959;8:255-63. (In Russ.)
7. Bychvarov D, Petkov PB, Siderov K. K kharakteristike kornevoy sistemy dubovykh nasazhdeniy v Vostochnykh Rodopakh. [On the characteristics of the root system of oak stands in the Eastern Rhodopes]. Gorskostopanska Nauka. 1976; 13(2):3-8. (In Bulgar. with Russ. abstract)
8. Vedrova EF, Shugaley LS, Stakanov VD. [Carbon balance in natural and disturbed southern taiga forests of Central Siberia]. Geografiya i Prirodnye Resursy. 2002;4:92-9. (In Russ.)
9. Verzunov AI. [The growth and the stability of larch plantations with its dominance on semi-hydromorphic soils of the forest-steppe of Northern Kazakhstan]. Ekologiya. 1980;2:38-44. (In Russ.)
10. Voronin PYu. [Annual photosynthetic sink of atmospheric carbon and NEP of the vegetation cover of Northern Eurasia]. Doklady AN RAN. 2006; 408(6):842-4. (In Russ.)
11. Golubiatnikov LL, Denisenko ЕА. [The influence of climatic changes on the vegetation of European Russia]. Izvestiya RAN Ser Geogr. 2009;2:57-68. (In Russ.)
12. Yermolenko PM, Yermolenko LG. [Altitude profiling features of stone pine and fir growth in the Western Sayan]. In: Formirovanie i Produktivnost’ Drevostoyev. [Formation and Productivity of Stands]. Novosibirsk: Nauka, 1981. P. 19-53. (In Russ.)
13. Zadeh LА. [The basics of a new approach to the analysis of complex systems and decision-making processes]. In.: Matematika Segodnya (Sbornik Perevodnykh Statey). [Mathematics Today (A Collection of Translated Articles)]. Мoscow: Znaniye; 1974. P. 5-49. (In Russ.)
14. Zaika VYe. [The current state of growth theory]. In: Zotin AI., Presnov YeV, eds. Matematicheskaya Biologiya Razvitiya. [Mathematical Biology of Development]. Мoscow: Nauka; 1982. P. 40-49. (In Russ.)
15. Zalesov SV, Atkina LI, Abramova LP, Lugansky NA. [The structure of the root system of pine plants in the juvenile age in the conditions of the Southern Urals]. Lesa Urala i Khoziaystvo v Nikh. 2004;24:46-51. (In Russ.)
16. Ziabchenko SS, Ivanchikov AA. [Zonal features of the formation of pine blueberry forests of Karelia and the Kola Peninsula and the dynamics of the biomass structure there]. In: Formirovaniye i Produktivnost’ Sosnovykh Nasazhdeniy Karelskoy ASSR i Murmanskoy Oblasti. [Formation and Productivity of Pine Stands of the Karelian ASSR and Murmansk Region]. Petrozavodsk: Institut Lesa KF AN SSSR, 1978. P. 30-75. (In Russ.)
17. Kazarian VO. Starenie Vysshikh Rasteniy. [Aging of Higher Plants]. Moscow: Nauka; 1969. (In Russ.)
18. Kazimirov NI, Volkov AD, Zyabchenko SS et al. Obmen Veshchestv i Tnergii v Sosnovykh Lesakh Yevropeyskogo Severa. [Matter and Energy Metabolism in the Pine Forests of the European North]. Leningrad: Nauka; 1977. (In Russ.)
19. Karizumi N. [Determination of root biomass in forests by sampling soil blocks]. In: Metody Izucheniya Produktivnosti Kornevykh Sistem i Organizmov rRzosfery: Mezhdunarodnyj Simposium SSSR. [Methods of Studying the Productivity of Root Systems and Rhizosphere Organisms: International Symposium of the USSR]. Leningrad: Nauka; 1968. P. 79-86. (In Russ.)
20. Kramer PD, Kozlovsky TT. Fiziologiya Drevesnykh Rasteniy. [Physiology of Woody Plants]. Moscow: Lesnaya Promyshlennost’; 1983. (In Russ.)
21. Kukarskikh VV. [What influences the radial growth of trees in a dry climate]. In: Ekologiya v Meniayushchemsia Mire: Materialy Konferentsii Molodykh Uchenykh, 24-28 Aplelia 2006 g. Yekaterinburg: Akademkniga; 2006. P. 120-2. (In Russ.)
22. Liyepa IYa. Dinamika Drevesnykh Zapasov: Prognozirovaniye i Ekologiya. [Wood Stock Dynamics: Forecast and Ecology]. Riga: Zinatne; 1980. (In Russ.)
23. Liyepa IYa. [Unified method of taxation of stand response to anthropogenic impact]. Lesovedeniye. 1985;6:12-8. (In Russ.)
24. Lyr H, Polster H, Fiedler H-J. Fiziologiya Drevesnykh Rasteniy. [Physiology of Woody Plants]. Moscow: Lesnaya Promyshlennost’; 1974. (In Russ.)
25. McLone RR. [Mathematical modeling – the art of applying mathematics]. In: Matematicheskoe Myodelirovanie. [Mathematical Modeling]. Moscow: Mir; 1979. P. 9-20. (In Russ.)
26. Molchanov АА. Produktivnost’ Organicheskoy Massy v Lesakh Razlichnykh Zon. [Productivity of Organic Matter in Forests of Various Zones]. Мoscow: Nauka; 1971. (In Russ.)
27. Moskaliuk TA. Struktura i Produktivnost’ Osnovnykh Tipov Lesa Yuga Magadanskoy Oblasti. [Structure and Productivity of the Main Types of Forests in the South of Magadan Region]. Abstract of PhD Thesis. Krasnoyarsk; 1982. (In Russ.)
28. Odum E. Osnovy Ekologii [Fundamentals of Ecology]. Мoscow: Mir; 1975. (In Russ.)
29. Orlov AYa. [Method for determining the mass of tree roots in the forest and the possibility of accounting for the annual increase of organic matter in the forest soil layer]. Lesovedeniye. 1967;1:64-70. (In Russ.)
30. Os’kina NV. Pochvennye Usloviya i Produktivnost’ Fitomassy Sosnovykh Nasazhdeniy Priokskikh Terrras v Moskovskoy Oblasti. [Soil Conditions and Phytomass Productivity of Pine Stands on Prioksky Terraces in Moscow Region]. Abstract of PhD Thesis. Moscow; 1982. (In Russ.)
31. Polikarpov NP. Formirovanie Sosnovykh Molodniakov na Kontsentrirovannykh Vyrubkakh. [Formation of Young Pine Trees in Concentrated Cuttings]. Moscow: AS SSSR Publ.; 1962. (In Russ.)
32. Rakhteenko IN, Yakushev BI. [A comprehensive method for the studying plant root systems]. In: Metody Izucheniya Produktivnosti Kornevykh Sistem i Organizmov Rizosfery: Mezhdunarodniy Symposium SSSR. [Methods of Studying the Productivity of Root Systems and Rhizosphere Organisms: International Symposium of the USSR]. Leningrad: Nauka; 1968. P. 174-8. (In Russ.)
33. Rozenberg GS. [Mathematical modeling of phytocenotic systems]. Biulleten’ МОIP. Otdelenie Biologii. 1980;85(2):79-88. (In Russ.)
34. Rozenberg GS, Rianskiy FN, Lazareva NV et al. Obshchaya i Prikladnaya Ekologia. [General and Applied Ecology]. Samara-Togliatti: Izdatel’stvo Samarskogo Gosudarstvennogo Ekonomicheskogo Universiteta; 2016. (In Russ.)
35. Smolonogov EP. [Forest formation process and genetic classification of forest types]. Lesa Urala i Khozyaystvo v Nikh. 1995;18:43-58. (In Russ.)
36. Terekhov GG, Usoltsev VA. [Stand morphostructure and rhizosphere root density of Siberian spruce plantations and secondary small-leaved natural stands in the Central Urals as a characteristic of their competitive relations]. Khvoynye Boreal’noy Zony. 2010;27(3-4):330-5. (In Russ.)
37. Tolmachev AI. Osnovy Ucheniya ob Arealakh: Vvedeniye v Khorologiyu Rasteniy. [Fundamentals of Plant Habitat Theory: Introduction to Plant Community Chorology]. Leningrad: Izdatel’stvo LGU; 1962. (In Russ.)
38. Usoltsev VA. Rost i Struktura Fitomassy Drevostoyev. [Growth and Structure of Forest Stand Biomass]. Novosibirsk: Nauka; 1988. (In Russ.)
39. Usoltsev VA. Bioekologicheskiye Aspekty Taksatsii Fitomassy Derevyev. [Bioecological Aspects of Tree Phytomass Mensuration]. Yekaterinburg: Ural’skoe Otdeleniye RAS; 1997. (In Russ. with Engl. abstract.)
40. Usoltsev VA. Biologicheskaya Produktivnost’ Lesov Severnoy Yevrazii: Metody, Baza Dannykh i Yeyo Prilozheniya. [Biological Productivity of Northern Yevrasia’s Forests: Methods, Database and its Applications]. Yekaterinburg: Ural’skoe Otdeleniye RAS; 2007. (In Russ. with Engl. abstract and contents.)
41. Usoltsev VA. Fitomassa i Pervichnaya Produktsiya Lesov Yevrazii. [Eurasian Forest Biomass and Primary Production Data]. Yekaterinburg: Ural’skoe Otdeleniye RAS; 2010. (In Russ. with Engl. contents.)
42. Usoltsev VA. Biologicheskaya Produktivnost’ Lesoobrazuyushchikh Porod v Klimaticheskikh Gradientakh Yevrazii: K Menedzhmentu Biosfernykh Funktsiy Lesov. [Biological Productivity of Forest-Forming Species In Eurasia’s Climate Gradients, as Related to Supporting the Processes of Decision-Making in Forest Management]. Yekaterinburg: UGLTU; 2016. (In Russ. with Engl. abstract.)
43. Usoltsev VA. [In the basements of the biosphere: What do we know about the primary production of tree roots?] Eko-Potentsial. 2018;4:24-77. (In Russ. with Engl. abstract.)
44. Usoltsev VA, Kolchin KV, Malenko AA. [Biases of generic allometric models in the local assessment of the phytomass of larch trees]. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta. 2017;4:85-90. (In Russ.)
45. Usoltsev VA, Tsepordey IS. [Climate gradients of Quercus spp. forest biomass in Eurasia]. Sibirskiy Lesnoy Zhurnal. 2020;6:16-29. (In Russ. with Engl. abstract.)
46. Usoltsev VА, Koviazin VF, Tsepordey IS et al. [Foliage biomass of the forests of Eurasia: a correction of empirical modeling methods]. Izvestia Sankt-Peterburgskoy Lesotehniceskoy Akademii. 2020;232:50-78. (In Russ. with Engl. summary.)
47. Usoltsev VA, Tsepordey IS, Azarenok MV. [Climatically determined spatial and temporal changes in the biomass of Abies L. of Eurasia in the context of the law of the limiting factor]. Khvoynye Boreal’noy Zony. 2021;39(5):392-400. (In Russ. with Engl. abstract.)
48. Usoltsev VA, Tsepordey IS. [The principle of space-for-time substitution in ecology and the prediction of Picea spp. biomass with climate change]. Khvoynye Boreal’noy Zony. 2021; 39(4): 269-75. (In Russ. with Engl. abstract.)
49. Usoltsev VА, Tsepordey IS. [Climatically caused territorial changes in the phytomass of forest forming tree species of Eurasia and their forecasting]. Sibirskiy Lesnoy Zhurnal. 2021;6:72-90. (In Russ. with Engl. abstract and references.)
50. Usoltsev VA, Tsepordey IS, Noritsin DV. [Allometric models for estimating the root biomass of forest-forming genera of Eurasia by remote sensing as related to global warming]. Khvoynye Boreal’noy Zony. 2022; 40 (1): 65-75. (In Russ. with Engl. abstract.)
51. Usoltsev VA, Tsepordey IS, Usoltsev AV. [Forecasting the biomass of cedar pines in northern Asia under climate change]. KhvoYnye Boreal’noy Zony. 2022;40(5). (Accepred for publication, in Russ. with Engl. abstract.)
52. Usoltsev VA, Tsepordey IS, Noritsin DV. [Allometric models of single-tree biomass for forest-forming species of the Urals]. Lesa Rossii i KhoziaYstvo v Nikh. 2022;1:4-14. (In Russ. with Engl. abstract.)
53. Fonti MV. Klimaticheskiy Signal v Parametrakh Godichnykh Kolets (Plotnosti Drevesiny, Anatomicheskoy Struktury i Izotopnom Sostave) Khvoynykh i Listvennykh Vidov Dereviyev v Razlichnykh Prirodno-Klimaticheskikh Zonakh Yevrazii. [Climatic Signal in the Parameters of Annual Rings (Wood Density, Anatomical Structure and Isotopic Composition) of Coniferous and Deciduous Tree Species in Various Natural and Climatic Zones of Eurasia]. Abstract of Doct of Sciences Thesis. Krasnoyarsk; 2020. (In Russ.)
54. Tsel’niker Yu L, Malkina IS, Kovalev AG, Chmora SN. Rost i Gazoobmen CO2 u Lesnykh Derevyev. [Growth and Gas Exchange of CO2 in Forest Trees]. Moscow: Nauka; 1993. (In Russ.)
55. Askari Y, Soltani A, Akhavan R, Kohyani PT. Assessment of root-shoot ratio biomass and carbon storage of Quercus brantii Lindl. in the central Zagros forests of Iran. J Forest Sci. 2017;63:282-89.
56. Aubin I, Boisvert-Marsh L, Kebli H et al. Tree vulnerability to climate change: Improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere. 2018; 9: Article e02108.
57. Axelsson B. Site differences in yield-differences in biological production or in redistribution of carbon within trees. Swed Univ Agric Sci Dep Ecol Environ Res Rep. 1981;9:1-11.
58. Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J Forest Res. 1972;2:49-53.
59. Beets PN, Pearce SH, Oliver GR, Clinton PW. Root/shoot ratios for deriving below-ground biomass of Pinus radiata stands. New Zealand J Forest Sci. 2007;37(2):267-88.
60. Belote RT, Carroll C, Martinuzzi S et al. Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States. Sci Rep. 2018;8:1-13.
61. Blois JL, Williams JW, Fitzpatrick MC et al. Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci USA. 2013;110:9374-9.
62. Bloom A., Chapin III FS, Mooney HA. Resource limitation in plants – An economic analogy. Ann Rev Ecol Syst. 1985;16:363-92.
63. Bonan GB, Pollard D, Thompson SL. Effects of boreal forest vegetation on global climate. Nature. 1992;359:716-8.
64. Bray JR. Root production and the estimation of net productivity. Can J Bot. 1963;41:65-72.
65. Brown S, Lugo A. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica. 1982;14(3):161-87.
66. Burian K. Produktion und Strahlungsnutzung bei Helianthus annuus, Zea mays und Phaseolus vulgaris während der gesamten Vegetationszeit. Sitzungsberichte der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse. 1970;178:1-35.
67. Büsgen M. Einiges über Gestalt und Wachstumsweise der Baumwurzeln. Allgemeine Forst- und Jagdzeitung. 1901;72:273-8.
68. Cairns MA, Brown S, Helmer EH, Baumgardner GA. Root biomass allocation in the world’s upland forests. Oecologia (Berlin). 1997;111:1-11.
69. Cárdenas-Pérez S, Rajabi Dehnav A, Leszczynski K et al. Salicornia europaea L. functional traits indicate its optimum growth. Plants. 2022;11:Article 1051.
70. Chapin FS III. The mineral nutrition of wild plants. Annu Rev Ecol Syst. 1980;11:233-60.
71. Devi NM, Kukarskih VV, Galimova АA et al. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural. Forest Ecosyst. 2020;7:Article 7.
72. Durkaya A, Durkaya B, Ulu Say S. Below- and aboveground biomass distribution of young Scots pines from plantations and natural stands. Bosque. 2016;37(3):509-18.
73. Esslen J. Das Gesetz des abnehmenden Bodenertrages seit Justus von Liebig: Eine dogmengeschichtliche Untersuchung. München, J. Schweitzer Verlag; 1905.
74. Farooq M, Wahid A, Kobayashi N et al. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29:185-212.
75. Fernandez OA, Caldwell MM. Phenology and dynamics of root growth of three cool semi-desert shrubs under field conditions. J Ecol. 1975;63(2):703-14.
76. Foden WB, Young BE, Akçakaya HR et al. Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change. 2019;10:Article e551.
77. Forrester DI, Tachauer IH, Annighöefer P et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecol Manag. 2017; 396:160-75.
78. Frauendorf TC, MacKenzie RA, Tingley III RW et al. Using a space-for-time substitution approach to predict the effects of climate change on nutrient cycling in tropical island stream ecosystems. Limnol Oceanogr. 2020;65:3114-27.
79. Freschet GT, Pagès L, Iversen CM et al. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytol. 2021;232:973-1122.
80. Friend AL, Scarascia-Mugnozza G, Isebrands JG, Heilman PE. Quantification of two-year-old hybrid poplar root systems: morphology, biomass and 14C distribution. Tree Physiol. 1991;8:109-19.
81. Gerhardt K, Fredriksson D. Biomass allocation by broad-leaf mahogany seedlings, Swietenia macrophylla (King), in abandoned pasture and secondary dry forest in Guanacaste, Costa Rica. Biotropica. 1995;27:174-82.
82. Gill RA, Jackson RB. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000;147:13-31.
83. Gower ST, Gholz HL, Nakane K, Baldwin VC. Production and carbon allocation pattern of pine forests. Ecol Bull. 1994;43:115-35.
84. Groisman PYa, Blyakharchuk TA, Chernokulsky AV et al. Climate changes in Siberia. In: Regional Environmental Changes in Siberia and Their Global Consequences. Groisman PYa., Gutman G. (Eds). Springer; 2013:57-109.
85. Guerrero-Ramırez NR, Mommer L, Freschet GT et al. Global root traits (GRooT) database. Glob Ecol Biogeogr. 2020;30:25-37.
86. Harris WF, Kinerson RS, Edwards NT. Comparison of belowground biomass of natural deciduous forests and loblolly pine plantations. Pedobiologia. 1977;17:369-81.
87. Helmisaari H-S, Makkonen K, Kellomäki S et al. Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecol Manag. 2002;165(1-3):317-26.
88. Houghton RA, Hall F, Goetz SJ. Importance of biomass in the global carbon cycle. Geophys Res Lett. 2009;114:G00E03.
89. Huang Y, Ciais P, Santoro M et al. A global map of root biomass across the world's forests. Earth Syst Sci Data. 2021;13:4263-74.
90. IPCC Guidelines for National Greenhouse Gas Inventories: Agriculture, Forestry, and other Land Use. 2006. Available at: http://www.ipcc-nggip.iges.or.jp.
91. IPCC (Intergovernmental Panel on Climate Change), Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Intergovernmental Panel on climate Change, Geneva, Switzerland, 2007. Available at: https://www.ipcc.ch/report/ar4/wg1/
92. Ker MF, Raalte GD. Tree biomass equations for Abies balsamea and Picea glauca in northwestern New Brunswick. Can J Forest Res. 1981;11:13-7.
93. Keyes MR, Grier CC. Above- and belowground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J Forest Res. 1981;11:599-605.
94. Kira T, Ogawa H, Yoda K, Ogino K. Comparative ecological studies on three main types of forest vegetation in Thailand. 4. Dry matter production with special reference to the Khao Chang rain forest. Nature and Life in S. E. Asia. 1967;5:149-74.
95. Laing J, Binyamin J. Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. Am J Clim Change. 2013;2:275-83.
96. Ledo A, Paul KI., Burslem DFRP et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol. 2017;217:8-11.
97. Le Goff N, Ottorini J-M. Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann Forest Sci. 2001;58:1-13.
98. Levy P. E., Hale S. E., Nicoll B. C. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry. 2004;77(5):421-30.
99. Liebig J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Verlag Vieweg; 1840. In: Deutsches Textarchiv (http://www.deutschestextarchiv.de/liebigagricultur840).
100. Lieth H. Modeling the primary productivity of the world. In: H. Lieth, R. H. Whittaker (eds.). Primary Productivity of the Biosphere. New York: Springer-Verlag; 1975. P. 237-63.
101. Liu H, Wang H, Li N et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat Clim Chang. 2022;12:97-102.
102. Luo Y, Wang X, Zhang X et al. Root:shoot ratios across China’s forests: forest type and climatic effects. Forest Ecol. Manag. 2012;269:19-25.
103. Mariën B, Ostonen I, Penanhoat A et al. On the below- and aboveground phenology in deciduous trees: observing the fine-root lifespan, turnover rate, and phenology of Fagus sylvatica L., Quercus robur L., and Betula pendula Roth for two growing seasons. Forests. 2021;12:Article 1680.
104. Mohan JE, Cox RM, Iverson LR. Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. Can J Forest Res. 2009;39:213-30.
105. Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol. 2006;12:84-96.
106. Monk CD. Root-shoot dry weights in loblolly pine. Bot Gaz. 1966;127(4):246-48.
107. Monserud RA, Huang S, Yang Y. Biomass and biomass change in lodgepole pine stands in Alberta. Tree Physiol. 2006;26:819-831.
108. Montagnoli A, Chiatante D, Godbold DL et al. Editorial: Modulation of growth and development of tree roots in forest ecosystems. Front Plant Sci. 2022;13:Article 850163.
109. Morley JW, Batt RD, Pinsky ML. Marine assemblages respond rapidly to winter climate variability. Glob Change Biol. 2017;23:2590-601.
110. Murphy PG, Lugo AE. Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica. 1986;18:89-96.
111. Nadelhoffer KJ, Aber JD, Melillo JM. Fine roots, net primary production and soil nitrogen availability: a new hypothesis. Ecology.1985; 66(4):1377-90.
112. Nihlgård B, Lindgren L. Plant biomass, primary production and bioelements of three mature beech forests in South Sweden. Oikos. 1977;28:95-104.
113. Niiyama K, Kajimoto T, Matsuura Y et al. Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. J Trop Ecol. 2010;26:271-84.
114. Oleksyn J, Reich PB, Chalupka W, Tjoelker MG. Differential above- and belowground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scand J Forest Res. 1999;14:7-17.
115. Overpeck J, Hughen K, Hardy D et al. Arctic environmental change of the last four centuries. Science. 1997; 278(5341):1251-6.
116. Parry M, Canziani O, Palutikof J et al. IPCC, 2007: Climate change 2007: impacts, adaptation and vulnerability. In: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge; 2007.
117. Reich PB, Luo Y, Bradford JB et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc Natl Acad Sci USA. 2014;111:13721-6.
118. Robinson D. Scaling the depths: belowground allocation in plants, forests and biomes. Funct Ecol. 2004;18:290-5.
119. Robinson D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc Roy Soc B. 2007;274:2753-9.
120. Rogers AD, Frinault BAV, Barnes DKA et al. Antarctic Futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Annu Rev Mar Sci 2020;12(7):1-34.
121 Royer-Tardif S, Boisvert-Marsh L, Godbout J et al. Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecol Evol. 2021;11(19):13081-100.
122. Russell MB, Domke GM, Woodall CW, D’Amato AW. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States. Carbon Balance Manage. 2015;10:Article 20.
123. Schenk HJ, Jackson RB. The global biogeography of roots. Ecol Monogr. 2002;72(3):311-28.
124. Schepaschenko D, Moltchanova E, Shvidenko A et al. Improved estimates of biomass expansion factors for Russian forests. Forests. 2018;9(6):Article 312.
125. Shelford VE. Animal Communities in Temperate America as Illustrated in the Chicago Region: A Study in Animal Ecology. Issue 5, Part 1. Pub. for the Geographic Society of Chicago by the University of Chicago Press; 1913.
126. Seidl R, Albrich K, Thom D, Rammer W. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. J Environ Manag. 2018; 209:46-56.
127. Serreze M, Walsh J, Chapin FS et al. Observational evidence of recent change in the northern high-latitude environment. Clim Change. 2000;46:159-207.
128. Singh JS, Lauenroth WK, Hunt HW, Swift DM. Bias and random errors in estimators of net root production: A simulation approach. Ecology. 1984;65(6):1760-4.
129. Smucker AJM, Nunez-Barrios A, Richie JT. Root dynamics in drying soil environments. Belowground Ecol. 1991;2(1):4-5.
130. Solly EF, Djukic I, Moiseev PA et al. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals. Oecologia. 2017;183:571-86.
131. Stegen JC, Swenson NG, Enquist BJ et al. Variation in above-ground forest biomass across broad climatic gradients. Glob Ecol Biogeogr. 2011;20(5):744-54.
132. Stine AR. Global demonstration of local Liebig's law behavior for tree-ring reconstructions of climate. Paleoceanogr Paleoclimatol. 2019;34:203-16.
133. Świątek B, Woś B, Chodak M et al. Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma. 2019;337:1021-7.
134. Tang X, Fan S, Qi L et al. Effects of understory removal on root production, turnover and total belowground carbon allocation in Moso bamboo forests. iForest. 2015;9:187-94.
135. Taylor WP. Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Liebig’s law of the minimum. Ecology. 1934;15:274-379.
136. Tranquillini W. Die Bedeutung des Lichtes und der Temperatur für die Kohlensäureassimilation von Pinus cembra – Jungwuchs an einem hochalpinen Standort. Planta. 1955;46(2):154-78.
137. Usoltsev VA. Forest biomass and primary production database for Eurasia: digital version. The third edition, enlarged. Monograph. Yekaterinburg: USFU; 2020. Available at: https://elar.usfeu.ru/bitstream/123456789/9648/1/Base_v2.xlsx.
138. Usoltsev VА, Merganičová K, Konôpka B, Tsepordey IS. The principle of space-for-time substitution in predicting Picea spp. biomass change under climate shifts. Cent Eur Forest J. 2022;68(3):1-16.
139. Usoltsev V, Zukow W, Tsepordey I. Climatically determined spatial and temporal changes in the biomass of Pinus sp. of Eurasia in the context of the law of the limiting factor. Ecol Quest. 2022;33(1):1-13.
140. Veloz S, Williams JW, Blois JL et al. No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by species distribution models. Glob Change Biol. 2012;18(5):1698-713.
141. Vitousek PM, Sanford RL Jr. Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst. 1986;17:137-67.
142. Vogt KA, Vogt DJ, Moore EE et al. Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. J Ecology. 1987;75:857-70.
143. Vogt KA, Vogt DJ, Brown S et al. Dynamics of forest floor and soil organic matter accumulation in boreal, temperate and tropical forests. In: R. Lai, J. Kimble, E. Levine, Stewart BA. (eds.). Soil Management and Greenhouse Effect. Boca Raton, FL: CRC, Lewis Publishers; 1995. P. 159-78.
144. Wade AA, Hand BK, Kovach RP et al. Assessments of species’ vulnerability to climate change: From pseudo to science. Biodivers Conserv. 2017; 26:223-9.
145. Wang JR, Zhong AL, Kimmins JP. Biomass estimation errors associated with the use of published regression equations of paper birch and trembling aspen. North J Appl Forestry. 2002;19(3):128-36.
146. Wang W, Zu Y, Wang H et al. Plant biomass and productivity of Larix gmelinii forest ecosystems in northeast China: intra- and inter-species comparison. Euras J Forest Res. 2005;8(1):21-41.
147. Wang X, Fang J, Zhu B. Forest biomass and root-shoot allocation in northeast China. Forest Ecol Manage. 2008;255(12):4007-20.
148. Waring RH, Schlesinger WH. Forest Ecosystems: Concepts and Management. New York: Academic Press; 1985.
149. Whittaker RH, Marks PL. Methods of assessing terrestrial productivity. In: Lieth H, Whittaker RH. (eds.). Primary Productivity of the Biosphere. Berlin, Heidelberg, New York: Springer-Verlag; 1975:55-118.
150. Wirth C, Schumacher J, Schulze E-D. Generic biomass functions for Norway spruce in Central Europe – a meta-analysis approach to-ward prediction and uncertainty estimation. Tree Physiol. 2004;24:121-39.
151. World Weather Maps; 2007. Available at: https://www.mapsofworld.com/referrals/weather.
152. Xiong F, Nie X, Yang L et al. Biomass partitioning pattern of Rheum tanguticum on the Qinghai–Tibet Plateau was affected by water-related factors. Plant Ecol. 2021;222:499-509.
153. Xu G-Q, Yu D-D, Li Y. Patterns of biomass allocation in Haloxylon persicum woodlands and their understory herbaceous layer along a groundwater depth gradient. Forest Ecol Manag. 2017;395:37-47.
154. Yuen JQ, Ziegler AD, Webb EL, Ryan CM. Uncertainty in below-ground carbon biomass for major land covers in Southeast Asia. Forest Ecol Manag. 2013;310:915-26.
155. Zerihun A, Montagu KD, Hoffmann MB, Bray SG. Patterns of below- and aboveground biomass in Eucalyptus populnea woodland communities of northeast Australia along a rainfall gradient. Ecosystems. 2006;9:501-15.




DOI: http://dx.doi.org/10.24855/biosfera.v14i3.683

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"