Common principles of interrelationships between living organisms and an ecosystem and between malignant cells and an organism

А.Г. Голубев

Abstract


The present review addresses studies based on behavioral similarities between cancer cells in a metazoan organism and unicellular organisms in an ecosystem and between malignant tumors and some primordial colonial forms of life, from which metazoans evolved. Unicellular organisms and their colonies can exist only by compensating for their losses by the proliferation of remaining cells. Therefore, proliferation or readiness to proliferate is a priority for cells. Metazoans evolution was associated with increasing the stringency of the control of this priority. In this perspective, the common set of cancer hallmarks, which emerges in the courses of progression of different cancers, which feature different initial combinations of mutations in oncogenes and antioncogenes and exist under different initial conditions possible in various organs, results not from the convergent evolution but rather from the recapitulation of the evolutionary primordial mode of cell life. The malignant transformation is a manifestation of the disinhibition of a gestalt of traits required for the survival of cell populationin an ecosystem, which is what a tumor host eventually turns to for the tumor. Such ecological attitudes to malignant growth suggest analogies betweenthe therapeutic resistance of cancer with the resistance of pests to pesticides or of bacteria to antibiotics and between metastases and invasive species. An important means used by unicellular organisms to survive in noxious conditions is increasing the rate of mutation to produce different variants, among which some may happen to fit the current situation. This is what occurs upon cancer therapy, which increases the genetic diversity of cancer cells and acts as a factor of the positive selection of cells for resistance to the very same therapy. Because the resulting cell clones compete for body resources, the elimination of the cells that respond to therapy is favorable for the cells that are resistant to it. Therefore, it is unwise to use chemotherapy for tumor elimination. It is more prudent to aim at achieving a balance of cancer cell populations, which makes it possible to turn cancer into a chronic rather than fatal disease. These arguments justify the current efforts to develop regiments of the so-called adaptive therapy for cancer.

Keywords


ecology, oncology, evolution, ecosystem, therapeutic resistance, adaptive therapy


Как процитировать материал

References


Голубев АГ, Семиглазова ТЮ, Клюге ВА, Каспаров БС, Беляев АМ, Анисимов ВН. Три пандемии сразу: неинфекционная (онкологическая), инфекционная (CoVID-19) и поведенческая (гипокинезия). Вопр онкол. 2021;67(2):163-80.

Голубев АГ. Болезни, старение и болезни старения. В кн.: Голубев АГ. Естественная история продолжительности жизни и старения. Санкт-Петербург: Эко-Вектор; 2022. С. 420-65.

Потиевский МБ, Шегай ПВ, Каприн АД. Перспективы применения методов эволюционной биологии в онкологии. Журн эволюц биохим физиол. 2022;58(2):84-95.

Стрельцова О, Прохоров А. Метрономная химиотерапия в лечении онкологических заболеваний. Онкол журн. 2018;12(1):89-94.

Golubev AG, Semiglazova TY, Klyuge VA, Kasparov BS, Belyaev AM, Anisimov VN. Three pandemics at once: noninfectious (cancer), infectious (COVID-19), and behavioral (hypokinesia). Voprosy Onkologii. 2021; 67(2):163-80. (In Russ.)

Golubev AG. Diseases, aging, and diseases of aging. In: Golubev AG. Yestestvennaya Istoriya Prodolzhitelnosti Zhizni i Stareniya Natural History of the Spans of Life and Aging. Saint Petersburg, Eko-Vektor; 2022. P. 42065.

Potievskiy MB, Shegai PV, Kaprin AD. Prospects for the application of methods of evolutionary biology in oncology. Zhurnal Evoliutsionnoy Biokhimii i Fiziologii. 58(2):84-95.(In Russ.)

Streltsova OV, ProkharauAV. Metronomic chemotherapy in the treatment of oncologic diseases. Onkologicheskiy Zhurnal. 2018;12(1):89-94. (In Russ.)

Adler FR, Amend SR, Whelan CJ, Baratchart E. From Ecology to Cancer Biology and Back Again. Frontiers Media SA; 2022.

Aggarwal V, Montoya CA, DonnenbergVS, Sant S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience. 2021;24(2):102113. doi: 10.1016/j.isci.2021.102113

Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, et al. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Transact Roy Soc B Biol Sci. 2015;370(1673). doi: 10.1098/rstb.2014.0219

Amend SR,Pienta KJ. Ecology meets cancer biology: the cancer swamp promotes the lethal cancer phenotype. Oncotarget. 2015;6:9669-78.

Basu S, Dong Y, Kumar R, Jeter C, Tang DG. Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol. 2022;78:90-103.

Belkhir S, Thomas F, Roche B. Darwinian approaches for cancer treatment: Benefits of mathematical modeling. Cancers. 2021;13(17):4448. doi: 10.3390/cancers13174448

Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021;101:147-76.

Bischoff-Ferrari HA, Willett WC, Manson JE, Dawson-Hughes B, Manz MG, Theiler R, et al. Combined vitamin D, omega-3 fatty acids, and a simple home exercise program may reduce cancer risk among active adults aged 70 and older: A randomized clinical trial. Front Aging. 2022;3. doi:10.3389/fragi.2022.852643

Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A. An emerging Allee effect is critical for tumor initiation and persistence. PLoS Comput Biol. 2015;11(9):e1004366. doi: 10.1371/journal.pcbi.1004366

Boutry J, Dujon AM, Gerard A-L, Tissot S, Macdonald N, Schultz A, et al. Ecological and evolutionary consequences of anticancer adaptations. iScience. 2020;23(11):101716. 10.1016/j.isci.2020.101716doi:

Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 2021;40(18):e108647. doi: 10.15252/embj.2021108647

Bukkuri A, Adler FR. Viewing cancer through the lens of corruption: Using behavioral ecology to understand cancer. Front Ecol Evolut. 2021;9. doi: 10.3389/fevo.2021.678533

Chikatsu N, Nakamura Y, SatoH, Fujita T, AsanoS, Motokura T. p53 mutations and tetraploids under r- and K-selection. Oncogene. 2002;21:3043-9.

Chroni A, Kumar S. Tumors are evolutionary island-like tcosystems. Genome Biol Evolut. 2021;13(12). doi:10.1093/gbe/evab276

Cunningham JJ. A call for integrated metastatic management.Nature Ecol Evolut. 2019;3:996-8.

Cunningham JJ, Bukkuri A, Brown JS, Gillies RJ, Gatenby RA. Coupled source-sink habitats produce spatial and temporal variation of cancer cell molecular properties as an alternative to branched clonal evolution and stem cell paradigms. Front Ecol Evolut. 2021;9. doi: 10.3389/fevo.2021.676071

Davies PCW, Lineweaver CH. Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Phys Biol. 2011;8(1):015001. doi: 10.1088/1478-3975/8/1/015001

DeGregori J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene. 2013;32:1869-75.

Denmeade S, Antonarakis ES, Markowski MC. Bipolar androgen therapy (BAT):Apatient's guide. Prostate. 2022;82:753-62.

Dolejs J. The extension of Gompertz law's validity. Mech Ageing Dev. 1997;99:233-44.

Domazet-Lošo T, Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010;8(1):66. doi:10.1186/1741-7007-8-66

Edwards J, Marusyk A, Basanta D. Selection-driven tumor evolution with public goods leads to patterns of clonal expansion consistent with neutral growth. iScience. 2021;24(1):101901. doi: 10.1016/j.isci.2020.101901

Farrokhian N, Maltas J, Dinh M, Durmaz A, Ellsworth P, Hitomi M, et al. Measuring competitive exclusion in non-small cell lung cancer. bioRxiv. 2020:2020.09. 18.303966. doi: 10.1101/2020.09.18.303966

Gatenbee CD, Minor ES, Slebos RJC, Chung CH, Anderson ARA. Histoecology: Applying ecological principles and approaches to describe and predict tumor ecosystem dynamics across space and time. Cancer Control. 2020;27(3):1073274820946804. doi: 10.1177/1073274820946804

Gatenby RA. A change of strategy in the war on cancer. Nature.2009;459:508-9.

Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive therapy. Cancer Res. 2009;69:4894-903.

Gatenby RA, Artzy-Randrup Y, Epstein T, Reed DR, Brown JS. Eradicating metastatic cancer and the ecoevolutionary dynamics of anthropocene extinctions. Cancer Res.2020;80:613-23.

Gedye C, Navani V. Find the path of least resistance: Adaptive therapy to delay treatment failure and improve outcomes. Biochimi Biophys Acta Rev Cancer. 2022;1877(2):188681. doi: 10.1016/j.bbcan.2022.188681

Gerlee P, Altrock PM, Malik A, Krona C, Nelander S. Autocrine signaling can explain the emergence of Allee effects in cancer cell populations. PLOS Comput Biol. 2022;18(3):e1009844. doi: 10.1371/journal.pcbi.1009844

Ghaffari Laleh N, Loeffler CML, Grajek J, Staňková K, Pearson AT, Muti HS, et al. Classical mathematical models for prediction of response to chemotherapy and immunotherapy. PLOS ComputBiol. 2022;18(2):e1009822. doi: 10.1371/journal.pcbi.1009822

Golubev AG, Anisimov VN. Aging and cancer: Is glucose a mediator between them? Oncotarget. 2019;10:675867.

Hamilton PT, Anholt BR, Nelson BH. Tumour immunotherapy: lessons from predator-prey theory. Nature Rev Immunol. 2022. doi: 10.1038/s41577-022-00719-y

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74.

Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest. 2000;105:1045-7.

Hansen E, Read AF. Modifying adaptive therapy to enhance competitive suppression. Cancers. 2020;12(12):3556. doi: 10.3390/cancers12123556 .

Huntly N, Freischel AR, Miller AK, Lloyd MC, Basanta D, Brown JS. Coexistence of "Cream Skimmer" and "Crumb Picker" phenotypes in nature and in cancer. Front Ecol Evolut. 2021;9. doi: 10.3389/fevo.2021.697618

Kareva I, Brown JS. Estrogen as an essential resource and the coexistence of ER+ and ER– cancer cells. Front Ecol Evolut. 2021;9. doi: 10.3389/fevo.2021.673082

Kareva I, Luddy KA, O’Farrelly C, Gatenby RA, Brown JS. Predator-prey in tumor-immune interactions: A wrong model or just an incomplete one? Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.668221

Kuznetsov M, Clairambault J, Volpert V. Improving cancer treatments via dynamical biophysical models. Phys Life Rev. 2021;39:1-48. 44.

Laco ni E, Marongiu F, DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Brit J Cancer. 2020;122:943-52.

Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, etal. The landscape of somatic mutation in normal colorectal epithelial cells. Nature. 2019;574:532-7.

Li T, Liu J,Feng J, Liu Z, Liu S, Zhang M, et al. Variation in the life history strategy underlies functional diversity of tumors. Natl Sci Rev. 2020;8(2):124. doi: 10.1093/nsr/nwaa124

Li X, Thirumalai D. A mathematical model for phenotypic heterogeneity in breast cancer with implications for therapeutic strategies. J Roy Soc Interface. 2022;19(186):20210803. doi: doi:10.1098/rsif.2021.0803

Liu R, Wang S, Tan X, Zou X. Identifying optimal adaptive therapeutic schedules for prostate cancer through combining mathematical modeling and dynamic optimization. Appl Math Modelling. 2022;107:688-700.

Ma L, Hernandez MO,Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell. 2019;36:418-30.

Martincorena I. Somatic mutation and clonal expansions in human tissues. Genome Med. 2019;11(1):35. doi: 10.1186/s13073-019-0648-4

Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171:1029-41.

Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. The evolutionary ecology of dormancy in nature and in cancer. Front Ecol Evolut. 2021;9. doi: 10.3389/fevo.2021.676802

Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic anti-cancer therapy: A multimodal therapy governed by the tumor microenvironment. Cancers. 2021;13(21):5414. doi: 10.3390/cancers13215414

Myers KV,Pienta KJ, Amend SR. Cancer cells and M2 macrophages: Cooperative invasive ecosystem engineers. Cancer Control. 2020;27(1):1073274820911058. doi: 10.1177/1073274820911058 .

Noorbakhsh J, Zhao Z-M, Russell JC, Chuang JH. Treating cancer as an invasive species. Mol Cancer Res. 2020;18:20-6.

Nowell P. The clonal evolution of tumor cell populations. Science. 1976;194:23-8.

Pienta KJ, Hammarlund EU, Axelrod R, Amend SR, Brown JS. Convergent evolution, evolving evolvability, and the origins of lethal cancer. Mol CancerRes. 2020;18:801-10.

Reynolds BA, Oli MW, Oli MK. Eco-oncology: Applying ecological principles to understand and manage cancer. Ecol Evolut. 2020;10:8538-53. doi: 10.1002/ece3.6590

Sabarinathan R, Pich O, Martincorena I, Rubio-Perez C, Juul M, Wala J, et al. The whole-genome panorama of cancer drivers. bioRxiv. 2017:190330. doi: 10.1101/190330 .

Somarelli JA. The hallmarks of cancer as ecologically driven phenotypes. Front EcolEvolut. 2021;9. doi: 10.3389/fevo.2021.661583

Susswein Z, Sengupta S, Clarke R, Bansal S. Borrowing ecological theory to infer interactions between sensitive and resistant breast cancer cell populations. bioRxiv. 2022. doi: 10.1101/2022.02.18.481041

Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871-90.

Trigos AS, Pearson RB, Papenfuss AT,Goode DL. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. eLife. 2019;8:e40947. doi: 10.7554/eLife.40947

Vaziri C, Rogozin IB, Gu Q, Wu D, Day TA. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene. 2021;40:6549-65.

Vendramin R, Litchfield K, Swanton C. Cancer evolution: Darwin and beyond. EMBO J. 2021;40(18):e108389.

Vincent M. Chapter 16 - Atavism theory — An introductory discourse. In: Ujvari B, Roche B, Thomas F, eds. Ecology and Evolution of Cancer: Academic Press; 2017. P. 211-8.

Whelan CJ, Cunningham JJ. Resistance is not the end: lessons from pest management. Cancer Control. 2020;27(1):1073274820922543. doi: 10.1177/1073274820922543

Whelan CJ, Gatenby RA. Special collection on ecological and evolutionary approaches to cancer control: Cancer finds a conceptual home. Cancer Control. 2020;27(1):1073274820942356. doi: 10.1177/1073274820942356

Wu DJ. Oversupply of limiting cell resources and the evolution of cancer cells: A review. Front Ecol Evolut. 2021;(258). doi: 10.3389/fevo.2021.653622




DOI: http://dx.doi.org/10.24855/biosfera.v14i2.674

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"