METABOLOMIC APPROACH TO STUDYING LYTHOBIONTIC COMMUNITIES

К.В. Сазанова, Д.Ю. Власов, А.Л. Шаварда, М.С. Зеленская, О.А. Кузнецова

Abstract


Reasons are provided for the adequacy of the metabolomics approach to assessing the chemical state of biofilms and primary soils on rock surfaces. The approach is applied to different biofilms on natural marble at Ruskeala Quarry, which are characterized by their appearance and dominant microorganisms. The metabolite profile data of the biofilms are treated using principal component analysis. The correlational structure of the data suggest that their pattering reflects i their developmental stages. The possible succession of changes in the biochemical states of biofilms is discussed.

Keywords


biofilms, lythobiontic communities, metabolomics, biochemical state, temporal trends.


Как процитировать материал

References


Литвинов МА. Методы изучения почвенных микроскопических грибов. Л.: Наука; 1969.

Litvinov MA. Metody Izucheniya Pochvennykh Microskopicheskikh Gribov. Leningrad: Nauka; 1969. (In Russ.).

Berdoulay M, Salvado JC. Genetic characterization of microbial communities living at the surface of building stones. Lett Appl Microbiol. 2009;49:311-6.

Bertalanffy L. Das biologische Weltbild. Bern: Francke; 1949.

Bieleski RL. Sugar alcohols. In: Loewus FA, Tanner W, eds. Plant Carbohydrates I: IntracellularCarbohydrates, Encyclopedia of Plant Physiology, 13A. New York: Springer; 1982. p. 158-92.

Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol. 2000;66:1007-19.

Case RJ, Labbate M, Kjelleberg S. AHLdriven quorum-sensing circuits: their frequency and function among the Proteobacteria. The ISME J. 2008 (2):345-9.

Danese PN, Pratt LA, Kolter R. Biofilm formation as a developmental process. Meth Enzymol. 2001;336:19-26.

Ehrlich GD, Ahmed A, Earl J, Hiller NL, Costerton JW, Stoodley P, Post JC, DeMeo P, Hu FZ. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol Med Microbiol. 2010 (59):269-79.

Ellis MB. Dematiaceous Hyphomycetes. Kew, Surrey, UK: Commonwealth Mycological Institute; 1971.

Ellis MB. More Dematiaceous Hyphomycetes. Kew, Surrey, UK: Commonwealth Mycological Institute; 1976.

Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002;46:203-56.

Haesler F, Hagn A, Frommberger M, Hertkorn N, Schmitt-Kopplin P, Munch JC, Schloter M. In vitro antagonism of an actinobacterial Kitasatospora isolate against the plant pathogen Phytophthora citricola as elucidated with ultrahighresolution mass spectrometry. J Microbiol Meth. 2008;75:188-95.

Hallmann C, Stannek L, Fritzlar D, Hause- Reitner D, Fried T, Hoppert M. Molecular diversity of phototrophic biofilms on building stone. FEMS Microbiol Ecol. 2013;84:355-72.

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95108.

Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N. The role of fungi in weathering. FrontEcol Environ. 2004;2(5):258-64.

Huang Y, Zeng Y, Yu Z, Zhang J, Feng H, Lin X. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems-a potential broad application on bioremediation. Bioresource Technology. 2013;(148):311-6. 17.De Hoog GS, Guarro J. Atlas of clinical fungi. Baarn: CBS; 1995.

De Hoog GS, Hermanides-Nijhof EJ. Survey of the black yeasts and allied fungi. Stud Mycol. 1977;15:178-223.

Jones OA, Sdepanian S, Lofts S, Svendsen C, Spurgeon DJ, Maguire ML, Griffin JL. Metabolomic analysis of soil communities can be used for pollution assessment. Environ Toxicol Chem. 2014;33(1):61-4.

Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007;111:3-49.

Gorbushina AA, Lialikova NN, Vlasov DYu, Khizhniak TV. Microbial communities on the monuments of Moscow and St. Petersburg: biodiversity and trophic relations. Mikrobiologiia. 2002;71(3):409-17.

Grbic ML, Vukojevic J, Simic GS, KrizmanicJ, Stupar M. Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia. Arch Bio Sci. 2010;62(3):625-31.

Keshari N, Prasad S, Biofouling A. Characterization of cyanobacteria isolated from biofilms on stone monuments at Santiniketan, India. Biofouling: J Bioadhesion Biofilm Res. 2013;29(5):525-36.

Komarek J, Anagnostidis K. Cyanoprokaryota. 1. Teil. Part: Chroococcales. Berlin: Spektrum, 1998.

Komarek J, Anagnostidis K, Cyanoprokaryota. 2. Teil. Part: Oscillatoriales. Berlin: Spektrum, 2005.

Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol. 2013;(97): 317-28.

Ortega-Morales BO, Lopez-Сorttes A, Ndez- Duque GH, Crassous P, Guezennec J. Extracellular Polymers of Microbial Communities Colonizing Ancient Limestone Monuments. Meth Enzymol. 2001;336:331-9.

Paul C, Barofsky A, Vidoudez C, Pohnert G. Diatom exudates influence metabolism and cell growth of co-cultured diatom species. Mar Ecol Prog Ser. 2009;389:61-70.

Peiris D, Dunn WB, Brown M, Kell DB, Roy I, Hedger JN. Metabolite profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus. Metabolomics. 2008;4:52-62.

Prieto B, Silva B, Lantes O. Biofilm quantification on stone surfaces: comparison of various methods. Sci Total Environ. 2004;333:1-7.

Ren D, Madsen JS, Sorensen SJ, Burmolle M. High prevalence of biofilm synergy among bacterialsoil isolates in co-cultures indicates bacterial interspecific cooperation. ISME J. 2015;9(1):81-9.

Sardans J, Penuelas J, Rivas A. Ecological metabolomics: overview of current developments and future challenges. Ubach Chemoecology. 2011;21:191-225.

Shavarda A, Kotlova E, Pozhvanov G, Sazanova K, Senik S. Existential metabolomics: visualization of growth and development processesthrough metabolite profiling. In: Proc 12th Annu Conf Metabolom Soc. Dublin; 2016. p. 124.

Suihko LM, Alakomi LH, Gorbushina AA, Fortune I, Marquardt J, Saarela M. Characterization of aerobic bacterial and fungal Microbiota on surfaces of historic scottish monuments. Syst ApplMicrobiol. 2007;30:494-508.

Sutherland IW. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222-7.

Viant MR. Metabolomics of aquatic organisms: the new ‘omics’ on the block. Mar Ecol Prog Ser. 2007;332:301-6.

Warscheid T, Braams J. Biodeterioration of stone: a review. Int Biodeter Biodegr. 2000;46: 343-68.

Zhang B, Powers R. Analysis of bacterial biofilms using NMR-based metabolomics. Future Med Chem. 2012;4(10):1273-306.




DOI: http://dx.doi.org/10.24855/biosfera.v8i3.262

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"