ГЕНЕТИЧЕСКОЕ РАЗНООБРАЗИЕ СОСНЫ ОБЫКНОВЕННОЙ (P. SYLVESTRIS L.) В СРЕДНЕЙ СИБИРИ ПО РЕЗУЛЬТАТАМ АНАЛИЗА ИЗМЕНЧИВОСТИ ХЛОРОПЛАСТНЫХ МИКРОСАТЕЛЛИТНЫХ ЛОКУСОВ

М.А. Шеллер, Е. Чиокырлан, П.В. Михайлов, С.С. Кулаков, Н.Н. Кулакова, Т.В. Сухих, А.Л. Курту

Аннотация


Сосна обыкновенная - одна из основных лесообразующих пород России. Мы оценили генетическое разнообразие и дифференциацию естественных популяций сосны обыкновенной в Средней Сибири, используя микросателлитный анализ хлоропластной ДНК. Всего было выявлено 87 гаплотипов. В большинстве случаев (77) гаплотип встречался только один раз. Высокий уровень гаплотипического разнообразия (HCP=0,993) был выявлен во всех изученных популяциях. Анализ молекулярной дисперсии (AMOVA) показал, что генетическая дифференциация между популяциями составила только 3%. Полученные результаты могут быть использованы в мониторинге состояния генетических ресурсов сосны обыкновенной в Средней Сибири.

Ключевые слова


сосна обыкновенная, Средняя Сибирь, генетическое разнообразие, микросателлитный анализ хлоропластной ДНК.

Полный текст:

PDF

Литература


1. Иванова ГА, Кукавская ЕА, Жила СВ. Воздействие пожаров на параметры баланса углерода и компоненты экосистемы в светлохвойных лесах средней Сибири. Интерэкспо Гео-Сибирь. 2010;4(2):54-8.

2. Ильинов АА, Раевский БВ. Состояние генофонда сосны обыкновенной Pinus sylvestris L. в Карелии. Сибирский лесной журнал. 2016;5:45-54.

3. Маркатюк АА, Рунова ЕМ, Гаврилин ИИ, Ведерников ИБ. Современное состояние бореальных лесов Восточной Сибири в аспекте естественного возобновления сосны обыкновенной. Системы Методы Технологии. 2013;1(17):163-9.

4. Семериков ВЛ, Семерикова СА, Дымшакова ОС, Зацепина КГ, Тараканов ВВ, Тихонова ИВ, Экарт АК, Видякин АИ, Жамьянсурен С, Роговцев РВ, Кальченко ЛИ. Полиморфизм микросателлитных локусов хлоропластной ДНК сосны обыкновенной (Pinus sylvestris L.) в Азии и Восточной Европе. Генетика. 2014; 50(6):577-85.

5. Торбик ДН, Бедрицкая ТВ, Власова ММ, Синельников ИГ. Генетическое разнообразие естественных популяций Pinus sylvestris. В кн.: Демидов НА, ред. Труды Федерального бюджетного учреждения «Северный научно-исследовательский институт лесного хозяйства». Архангельск; 2019. С.91-9.

1. Ivanova GA, Kukavskaya EA, Zhila SV. [Fire impact on carbon balance parameters and ecosystem components of light-coniferous forests of central Siberia.] Interekspo Geo-Sibir’. 2010;4(2):54-8. (In Russ.)

2. Ilyinov АА, Raevsky BV. [The current state of Pinus sylvestris L. gene pool in Karelia.] Sibirskiy Lesnoy Zhurnal. 2016;5:45-54. (In Russ.)

3. Markatiuk AA, Runova YeM, Gavrilin II, Vedernikov IB. [Current state of East Siberian boreal forests in the aspect of natural Pinus sylvestris L. regeneration systems.] Sistemy Metody Tekhnologii. 2013;1(17):163-169. (In Russ.)

4. Semerikov VL, Semerikova SA, Dymshakova OS, Zatsepina KG, Tarakanov VV, Tikhonova IV, Ekart AK, Vidiakin AI, Jamyansuren S, Rogovtsev RV, Kalchenko LI. [Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and Eastern Europe]. Genetika. 2014;50(6):577-85. (In Russ.)

5. Torbik DN, Bedrickaya TV, Vlasova MM, Sinelnikov IG [Genetic Diversity of Natural Populations of Pinus sylvestris]. In: Demidov NA, ed. Trudy Federalnogo Biudzhetnogo Uchrezhdeniya «Severnyi Nauchno-issledovatelskiy Institut Lesnogo Kyoziaystva». Arkhangelsk; 2019. P.91-9. (In Russ.)

6. Bernhardsson C, Floran V, Ganea SL and García-Gil MR. Present genetic structure is congruent with the common origin of distant Scots pine populations in its Romanian distribution. Forest Ecol Manag. 2016;361:131-43.

7. Cui B, Deng P, Zhang S, Zhao Z. Genetic diversity and population genetic structure of ancient Platycladus orientalis L. (Cupressaceae) in the middle reaches of the Yellow River by chloroplast microsatellite markers. Forests 2021;12:592.

8. Dering M, Kosiński P, Wyka T P, Pers-Kamczyc E, Boratyński A, Boratyńska K, Reich P B, Romo A, Zadworny M, Żytkowiak R, Oleksyn J. Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. Diversity Distrib. 2017;23: 540-55.

9. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13-5.

10. Ebert D, Peakall R. Chloroplast simple sequence repeats (cpSSRs): Technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour. 2010;9:673-90.

11. Eliades N-G, Eliades DG. HAPLOTYPE ANALYSIS: software for analysis of haplotypes data. Distributed by the authors. Goettingen: Forest Genetics and Forest Tree Breeding, Georg-Augst University; 2009.

12. Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Forest Genetic Resources. Commission on Genetic Resources for Food and Agriculture. Rome; 2014.

13. González-Díaz P, Cavers S, Iason G R, Booth A, Russell J, Jump AS. Weak isolation by distance and geographic diversity gradients persist in Scottish relict pine forest. iForest. 2018;11:449-58.

14. Ivetić V, Devetaković J, Nonić M, Stanković D, Šijačić-Nikolić M. Genetic diversity and forest reproductive material - from seed source selection to planting. iForest. 2016;9:801-12.

15. Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J. Glacial vicariance in Eurasia: mitochondrial DNA evidence from scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol. 2007;7(1):233.

16. Peakall R, Smouse PE. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006; 6: 288–95.

17. Porth I, El-Kassaby YA. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity. 2014;6:283-95.

18. Provan J, Soranzo N, Wilson NJ, McNicol JW, Forrest GI, Cottrell J, Powell W. Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple sequence repeats. Proc Roy Soc L Ser B.1998;265:1697-705.

19. Przybylski P, Tereba A, Meger J, Szyp-Borowska I, Tyburski Ł. Conservation of genetic diversity of Scots Pine (Pinus sylvestris L.) in a Central European national park based on cpDNA. Stud Divers. 2022;14(2):93.

20. Rai KC, Ginwal HS. Microsatellite analysis to study genetic diversity in Khasi Pine (Pinus Kesiya Royle Ex. Gordon) using chloroplast SSR markers. Silvae Genet. 2018;67:99-105.

21. Robledo-Arnuncio JJ, Collada C, Alia R, Gil L. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr. 2005;32(4):595-605.

22. Scalfi M, Piotti A, Rossi M, Piovani P. Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: The rear edge of the range. Eur J Forest Res. 2009;128:377-86.

23. Sheller M, Ciocîrlan E, Mikhaylov P, Kulakov S, Kulakova N, Ibe A, Sukhikh T, Curtu A L. Chloroplast DNA Diversity in Populations of P. sylvestris L. from Middle Siberia and the Romanian Carpathians. Forests. 2021;12:1757.

24. Şofletea N, Mihai G, Ciocîrlan E, Curtu AL. Genetic diversity and spatial genetic structure in isolated Scots Pine (Pinus sylvestris L.) populations native to eastern and southern Carpathians. Forests. 2020;11(10):1047.

25. Urbaniak L, Wojnicka-Półtorak A, Celiński K, Lesiczka P, Pawlaczyk E. Genetic resources of relict populations of Pinus sylvestris (L.) in Western Carpathians assessed by chloroplast microsatellites. Biologia. 2019:1-10.

26. Vasilyeva Y, Chertov N, Nechaeva Y, Sboeva Y, Pystogova N, Boronnikova S, Kalendar R. Genetic structure, differentiation and originality of Pinus sylvestris L. populations in the east of the East European Plain. Forests. 2021;12:999.

27. Vendramin GG, Lelli L, Rossi P, Morgante M. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol. 1996;5:111-4.




DOI: http://dx.doi.org/10.24855/biosfera.v15i4.868

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"