СВЕТОВОЕ АНТРОПОГЕННОЕ ЗАГРЯЗНЕНИЕ: ДЕЙСТВИЕ НА НАСЕКОМЫХ

М.И. Жуковская, И.Ю. Северина, Е.С. Новикова

Аннотация


Насекомые в силу их многочисленности и разнообразия в значительной степени обеспечивают устойчивость экосистем Земли. Быстро изменяющиеся вследствие деятельности человека условия освещения приводят к разнонаправленным изменениям в поведении, физиологии и, в конечном счете, численности этих животных. Настоящий обзор посвящен изменениям в биологии насекомых при антропогенном световом загрязнении. Насекомые с ночной активностью более подвержены прямому негативному влиянию света в ночное время суток, приводящему к падению их численности вследствие укорочения периодов питания и размножения. Дневные виды могут получать некоторые преимущества от более продолжительного активного периода. Наступление позволяющего пережить зиму состояния временного физиологического покоя – диапаузы – критически зависит от длительности дня, при этом удлинение светлого времени суток приводит к более позднему или неполному формированию этой защитной стадии как у дневных, так и у ночных насекомых. Мигрирующие насекомые наиболее подвержены влиянию точечных источников света, которые приводят к нарушению маршрутов их следования и массовой гибели. Непрямое световое загрязнение связано с применением материалов, поляризующих свет, таких как асфальтовые покрытия дорог и полимерные пленки, что связано с использованием насекомыми поляризованного света для обнаружения водных поверхностей. Несмотря на относительно недавнее почти повсеместное распространение искусственного света, некоторые насекомые уже демонстрируют приспособление к новым условиям. Действие светового загрязнения на насекомых остается малоизученным не только вследствие их огромного видового разнообразия, но и в связи с быстрым изменением применяемых источников света, их яркостью и спектральными характеристиками. Подбор параметров освещения может не только сгладить негативное действие ночного освещения на насекомых в природе, но и сконструировать специальные осветители в качестве нетоксичных средств борьбы с вредителями тепличных культур и запасов, а также синантропных насекомых в изолированных от окружающей среды помещениях.

Ключевые слова


насекомые; искусственное освещение; световое загрязнение

Полный текст:

PDF

Литература


Грибакин ФГ. Механизмы фоторецепции насекомых. Л.: Наука; 1981.

Грибакин ФГ, Поляновский АД, Уханов КЮ, Алексеев ЕН, Говардовский ВИ. Поляризованный сенсор насекомых: оптика, устройство, физиология. Сенсорные системы. 1998;12:389.

Липчанская ИИ, Довганюк АИ. Изучение влияния декоративной подсветки в городе на морфологические показатели древесных растений. Вестник ландшафтной архитектуры. 2018;(15):41-4.

Лопатина ЕБ, Кипятков ВЕ, Балашов СВ, Кучеров ДА. Взаимодействие фотопериода и температуры – новая форма сезонной регуляции роста и развития у насекомых, исследованная на примере жужелицы Amara communis (Coleoptera, Carabidae). Журн эволюц биохим физиол. 2011;47(6):491-503.

Мазохин-Поршняков ГА. Зрение насекомых. М.: Наука; 1965.

Мазохин-Поршняков ГА, Елизаров ЮА, Жантиев РД, Чернышов ВБ. Руководство по физиологии органов чувства насекомых. М.: МГУ; 1983.

Матвеев ЛТ, Вершель ЕА, Матвеев ЮЛ. Влияние антропогенных факторов на климат городов. Ученые записки РГГМУ. 2011;(17):41-50.

Новикова ЕС, Жуковская МИ. Реакция замирания под действием яркого света у американского таракана, Periplaneta americana. Сенсорные системы. 2017;31(1):44-50.

Новикова ЕС, Северина ИЮ, Исавнина ИЛ, Жуковская МИ. Даунрегуляция ультрафиолет-чувствительного зрительного пигмента таракана уменьшает эффект маскинга при коротковолновом освещении. Сенсорные системы. 2021;35(1):22-9.

Резник СЯ. Экологические и эволюционные аспекты фототермической регуляции диапаузы у трихограмм. Журн эволюц биохим физиол. 2011;47(6):434-43.

Самков МН. Возможности сбора насекомых на искусственный свет в дневное время. Зоологич журн. 1989;68(4):110-3.

Саулич АХ, Волкович ТА. Экология фотопериодизма насекомых. СПб.: Изд-во СПбГУ; 2004.

Саулич АХ, Мусолин ДЛ. Летняя диапауза как особая сезонная адаптация насекомых: разнообразие форм проявления, механизмов контроля и экологическое значение. Энтомологическое обозрение. 2017;96(4):665-703.

Селиховкин АВ. Могут ли вспышки массового размножения насекомых-дендрофагов оказать существенное влияние на состояние биосферы? Биосфера. 2009;1(1):072-81.

Фролов АН. Закономерности динамики численности вредителей и фитосанитарный прогноз. Вестник защиты растений. 2019;(3):4-33.

Чернышев ВБ. Экология насекомых. М.: Изд-во МГУ; 1996.

Gribakin FG. [Mekhanizmy Fotoretseptsii Nasekomykh]. Leningrad: Nauka 1981. (In Russ.)

Gribakin FG, Polyanovskiy AD, Ukhanov KYu, Alekseev YeN, Govardovskiy VI. [Polarization sensor in insects: Optics, design and physiology]. Sensornye Sistemy. 1998;12:389. (In Russ.)

Lipchanskaya II, Dovganyuk AI. [Studies of the effects of decorative illumination in cities on the morphological characteristics of trees]. Vestnik Landshaftnoy Arkhitektury. 2018;(15):41-4. (In Russ.)

Lopatina YEB, Kipiatkov VYE, Balashov SV, Kucherov DA. [Interactions between photoperiod and temperature: A novel mode of seasonal regulation of growth and development in insects as exemplified with the carabus Amara communis (Coleoptera, Carabidae)]. Zhurn Evoliuts Biokhim Fiziol. 2011;47(6):491-503. (In Russ.)

Mazokhin-Porshnyakov GA. Zreniye Nasekomykh. Moscow: Nauka; 1965. (In Russ.)

Mazokhin-Porshnyakov GA, Yelizarov YuA, Zhantiev RD, Chernyshov VB. Rukovodstvo po Fiziologii Organov Chuvctva Nasekomykh. Moscow: MGU; 1983. (In Russ.)

Matveev LT, Bershel YEA, Matveev YuL. [The effects of anthropogenic factors on urban climate]. Uchenye Zapiski RGGMU. 2011;(17):41-50. (In Russ.)

Novikova YeS, Zhukovskaya MI. [The freezing response induced in American cockroaches Periplaneta americana by bright light]. Sensornye Sistemy. 2017;31(1):44-50. (In Russ.)

Novikova YeS, Severina IYu, Isavnina IL, Zhukovskaya MI. [Downregulation of the UV-sensitive visual pigment reduces the masking effect in cockroaches upon short-wave illumination]. Sensornye Sistemy. 2021;35(1):22-9. (In Russ.)

Reznik SYa. [Ecological and evolutionary aspects of the photo-thermal regulation of diapaus in trichogrammatids]. Zhurn Evolyuts Biohim Fiziol. 2011;47(6):434-43. (In Russ.)

Samkov MN. [Opportunities for insect collection using artificial light in daytime]. Zoologicheskiy Zhurnal. 1989;68(4):110-3.

Saulich Akh, Volkovich TA. [Ekologiya Fotoperiodizma Nasekomykh]. Saint Peterwburg: SPbGU; 2004. (In Russ.)

Saulich AKh, Musolin DL. [Summertime diapause as a special seasonal adaptation in insects: Diversity of manifestations and control mechanisms and ecological significance]. Entomologicheskoye Obozreniye. 2017;96(4):665-703. (In Russ.)

Selikhovkin AV. [Can outbreaks of dendrophagous insects make a considerable impact on the Biosphere?]. Biosfera. 2009;1(1):072-81.

Frolov AN. [Regularities in the dynamics of pest quantities and the phytosanitary forecasting]. Vestnik Zaschity Rasteniy. 2019;(3):4-33.

Chernyshov VB. Ekologiya Nasekomykh. Moscow: MGU; 1996.

Able KP. Mechanisms of orientation, navigation and homing. In: Animal Migration, Orientation and Navigation. Academic Press; 1980. P. 283-373.

Altermatt F, Ebert D. Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution. Biol Lett. 2016;12(4):e20160111.

Argentiero A, Cerqueti R, Maggi M. Outdoor light pollution and COVID-19: The Italian case. Environ Impact Assess Rev. 2021; 90:e106602.

Anisimov VN. Light pollution, reproductive function and cancer risk. NeuroEndocrinol Lett. 2006;27(1-2):35-52.

Aschoff J. Freerunning and entrained circadian rhythms. In: Biological Rhythms: Boston, MA: Springer; 1981. P. 81-93.

Baird E, Byrne M, Scholtz C, Warrant E, Dacke M. Bearing selection in ball-rolling dung beetles: is it constant? J Comp Physiol A. 2010;196:801-6.

Beer K, Helfrich-Förster C. Model and non-model insects in chronobiology. Front Behav Neurosci. 2020;14:221.

von Buddenbrock W. Die Lichtkompassbewegungen bei den Insekten, insbesondere den Schmetterlingsraupen. Sitzungsber Heidelb Akad Wiss Math. Naturwiss Kl. 1917;8:1-26.

Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science. 2010;327:682-5.

Dacke M, Nordstrom P, Scholtz CH. Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol. 2003;206:1535-43.

Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ. Insect orientation to polarized moonlight. Nature. 2003;424:33.

Dacke M, Byrne MJ, Scholtz CH, Warrant EJ. Lunar orientation in a beetle. Proc Biol Sci. 2004;271:361-5.

Dacke M, Baird, E, Byrne M, Scholtz CH, Warrant E J. Dung beetles use the Milky Way for orientation. Curr Biol. 2013;23(4):298-300.

Da Silva A, Valcu M, Kempenaers B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos Trans R Soc B Biol Sci. 2015;370:e20140126.

Djuretic A, Kostic M. Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting. Energy. 2018;157:367-78.

Dolezel D. Photoperiodic time measurement in insects. Curr Opin Insect Sci. 2015;7:98-103.

Dominoni D, Quetting M, Partecke J. Artificial light at night advances avian reproductive physiology. Proc R Soc B. 2013;280:e20123017.

van Doorn WG, van Meeteren U. Flower opening and closure: a review. J Exp Bot. 2003;54:1801-12.

Dreisig H. The importance of illumination level in the daily onset of flight activity in nocturnal moths. Physiol Entomol. 1980;5(4):327-42.

Egri Á, Száz D, Farkas A, Pereszlényi Á, Horváth G, Kriska G. Method to improve the survival of night-swarming mayflies near bridges in areas of distracting light pollution. R Soc Open Sci. 2017;4(11):171166.

Eisenbeis G, Hänel A, McDonnell M, Hahs A, Breuste J. Light pollution and the impact of artificial night lighting on insects. In: Ecology of Cities and Towns. Cambridge University Press; 2009. P. 243-63.

El Jundi B, Foster JJ, Byrne MJ, Baird E, Dacke M. Spectral information as an orientation cue in dung beetles. Biol Lett. 2015;11(11):e20150656.

Farkas TE, Mononen T, Comeault AA, Nosil P. Observational evidence that maladaptive gene flow reduces patch occupancy in a wild insect metapopulation. Evolution. 2016;70:2879-88.

Fent K, Wehner R. Oceili: a celestial compass in the desert ant Cataglyphis. Science. 1985;228:192-4.

Firebaugh A, Haynes KJ. Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia. 2016;182:1203-11.

Frantsevich L, Govardovski V, Gribakin F, Nikolajev G, Pichka V, Polanovsky A, Shevchenko V, Zolotov V. Astroorientation in Lethrus (Coleoptera, Scarabaeidae). J Comp Physiol. 1977;121:253-71.

Freas CA, Plowes NJ, Spetch ML. Not just going with the flow: foraging ants attend to polarised light even while on the pheromone trail. J Comp Physiol A. 2019;205:755-67.

von Frisch K. The Dance Language and Orientation of Bees. Cambridge, UK: Harvard University Press; 1993.

Gaston KJ, Visser ME, Hölker F. The biological impacts of artificial light at night: the research challenge. Philos Trans R Soc Lond B Biol Sci. 2015;370(1667):e20140133.

Geffen van KG, van Grunsven RHA, van Ruijven J, Berendse F, Veenendaal EM. Artificial light at night causes diapauses inhibition and sex-specific life history changes in a moth. Ecol Evolut. 2014;4:2082-9.

Geffen van KG et al. Artificial light at night inhibits mating in a Geometrid moth. Insect Conserv Divers. 2015;8(3):282-7.

Geffen van KG. van Eck E, de Boer RA, van Grunsven RH, Salis L, Berendse F, Veenendaal EM. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol Entomol. 2015;40(4):401-8.

Gomes E, Rey B, Débias F, Amat I, Desouhant E. Dealing with host and food searching in a diurnal parasitoid: consequences of light at night at intra and trans generational levels. Insect Conserv Divers. 2021;14(2):235-46.

Govender P. Management of insect pests: Have the goalposts changed with certification? The Southern African Forestry J. 2002;195(1):39-45.

Greenslade AF, Chapman JW, Reynolds DR. High-altitude migration of Psylloidea (Hemiptera) over England. Entomol Gazette. 2021;72(3):189-98.

Gribakin FG, Vishnevskaya TM, Polyanovskii AD. Polarization and spectral sensitivity of single photoreceptors of the domestic cricket. J Neurophysiol. 1979;11(5):358-65.

Gribakin FG. Cellular basis of colour vision in the honey bee. Nature. 1969;223:639-41.

Grubisic M. Waters under artificial lights: does light pollution matter for aquatic primary producers? Limnol Oceanogr Bull. 2018;27(3):76-81.

Grunsven van RHA, Jähnichen D, Grubisic M, HölkerF. Slugs (Arionidae) benefit from nocturnal artificial illumination. J Exp Zool A Ecol Integr Physiol. 2018;329(8-9):429-433.

Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One. 2017;12(10):e0185809.

Hendricks JC, Sehgal A, Pack AI. The need for a simple animal model to understand sleep. Prog Neurobiol. 2000;61(4):339-51.

Honkanen A, Immonen E-V, Salmela I, Heimonen K, Weckstrom M. Insect photoreceptor adaptations to night vision. Phil Trans R Soc B. 2017;372:e20160077.

Horváth G, Zeil J. Kuwait oil lakes as insect traps. Nature. 1996;379:303-4.

Horváth G, Bernáth B, Molnár G. Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften. 1998;85:292-7.

Horváth G, Kriska G, Malik P, Robertson B. Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ. 2009;7(6):317-25.

Ivantsova ED, Pyzhev AI, Zander EV. Economic consequences of insect pests outbreaks in boreal forests: A literature review. J Sib Fed Univ Humanit Soc Sci. 2019;12(4):627-42.

Kamruzzaman ASM, Hiragaki S, Watari Y, Natsukawa T, Yasuhara A, Ichihara, N, Mohamed AA, Elgendy AM, Takeda M. Clock controlled arylalkylamine N-acetyltransferase (aaNAT) regulates circadian rhythms of locomotor activity in the American cockroach, Periplaneta americana, via melatonin/MT2like receptor. J Pineal Res. 2021;71(2):e12751.

Kelber A, Jonsson F, Wallén R, Warrant E, Kornfeldt T, Baird E. Hornets can fly at night without obvious adaptations of eyes and ocelli. PLoS One. 2011;6(7):e21892.

Kim YJ, Lee E, Lee HS, Kim M, Park MS. High prevalence of breast cancer in light polluted areas in urban and rural regions of South Korea: An ecologic study on the treatment prevalence of female cancers based on National Health Insurance data. Chronobiol Int. 2015;32(5):657-67.

Kinoshita M, Arikawa K. Colour constancy in the swallowtail butterfly Papilio Xuthus. J Exp Biol. 2000;203:3521-30.

Kloog I, Haim A, Stevens RG, Portnov BA. Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol Int. 2009;26(1):108-25.

Kolligs D. Ecological effects of artificial light sources on nocturnally active insects, in particular on butterflies (Lepidoptera). Faunistisch-Oekologische Mitteilungen Supplement. 2000;28:1-136.

Kraft P, Evangelista C, Dacke M, Labhart T, Srinivasan MV. Honeybee navigation: following routes using polarized-light cues. Philos Trans R Soc B Biol Sci. 2011;366(1565):703-8.

Kriska G, Horváth G and Andrikovics S. Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. J Exp Biol. 1998;201:2273-86.

Kureck A, Fontes RJ. The life cycle and emergence of Ephoron virgo, a large potamal mayfly that has returned to the River Rhine. Arch Hydrobiol. Suppl (Large Rivers 10). 1996;113:319-23.

Labhart T, Meyer EP. Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol. 2002;12:707-14.

Land M F, Fernald RD. The evolution of eyes. Annu Rev Neurosci. 1992;15(1):1-29.

Langevelde van F, van Grunsven RH, Veenendaal EM, Fijen TP. Artificial night lighting inhibits feeding in moths. Biol Lett. 2017;13:e20160874.

Langevelde van F, Braamburg‐Annegarn M, Huigens ME, Groendijk R, Poitevin O, van Deijk JR, Wallis DeVries MF. Declines in moth populations stress the need for conserving dark nights. Glob Chang Biol. 2018;24(3):925-32.

Leather SR. “Ecological Armageddon” – more evidence for the drastic decline in insect numbers. Ann Appl Biol. 2017;172(1):1-3.

Leppla NC, Fisher WR. Total quality control in insect mass production for insect pest management 1. J Appl Entomol. 1989;108(1-5):452-61.

Lyson TR, Miller IM, Bercovici AD, Weissenburger K, Fuentes AJ, Clyde WC, Hagadorn JW, Butrim MJ, Johnson KR, Fleming RF, Barclay RS. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science. 2019;366:977-83.

Mensel R. Spectral sensitivity and colour vision in invertebrates. In: Autrum H, ed. Handbook of Sensory Physiology Vol. VII/6A: Invertebrate Photoreceptors. Berlin, Heidelberg, New York: Springer; 1979. P. 503-79.

Milde JJ, Homberg U. Ocellar interneurons in the honeybee. J Comp Physiol A. 1984;155(2):151-60.

Mizunami M. Functional diversity of neural organization in insect ocellar systems. Vision Res. 1995;35(4):443-52.

Mote MI, Wehner R. Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J Comp Physiol. 1980;137(1):63-71.

Mrosovsky N. Masking: history, definitions, and measurement. Chronobiol Int. 1999;16(4):415-29.

Mukai A, Yamaguchi K, Goto SG. Urban warming and artificial light alter dormancy in the flesh fly. R Soc Open Sci. 2021;8(7):210866.

Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45-50.

Nowinszky L. The orientation of insects by light – major theories. In: Nowinszky L, ed. The Handbook of Light Trapping. Szombathely: Savaria University Press; 2003. P. 15-8.

Owens AC, Lewis SM. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol Evol. 2018;8(22):11337-58.

Owens AC, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B. Light pollution is a driver of insect declines. Conserv Biol. 2020;241:e108259.

Peng W, Ma NL, Zhang D, Zhou Q, Yue X, Khoo SC, Yang H, Guan R, Chen H, Zhang X, Wang Y. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environ Res. 2020;191:e110046.

Raven JA, Cockell CS. Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe). Astrobiology. 2006;6:668-75.

Ribi W, Warrant E, Zeil J. The organization of honeybee ocelli: regional specializations and rhabdom arrangements. Arthropod Struct Dev. 2011;40(6):509-20.

Richter K, Peschke E, Peschke D. A neuroendocrine releasing effect of melatonin in the brain of an insect, Periplaneta americana (L.). J Pineal Res. 2000;28:129-35.

Sánchez de Miguel A, Bennie J, Rosenfeld E, Dzurjak S, Gaston KJ. First estimation of global trends in nocturnal power emissions reveals acceleration of light pollution. Remote Sens. 2021;13(16):3311.

Senzaki M, Barber JR, Phillips JN, Carter NH, Cooper CB, Ditmer MA, Fristrup KM, McClure CJ, Mennitt DJ, Tyrrell LP, Vukomanovic J. Sensory pollutants alter bird phenology and fitness across a continent. Nature. 2020;587:605-9.

Seymoure BM. Enlightening butterfly conservation efforts: the importance of natural lighting for butterfly behavioral ecology and conservation. Insects. 2018;9(1):22.

Scheibe M. Über den Einfluss von Straßenbeleuchtung auf aquatische Insekten (Ephemeroptera, Plecoptera, Trichoptera, Diptera: Simuliidae, Chironomidae, Empididae). Natur und Landschaft. 2003;6:264-7.

Schwind R. Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A. 1991;169(5):531-40.

Shahzad G, Yang H, Ahmad AW, Lee C. Energy-efficient intelligent street lighting system using traffic-adaptive control. IEEE Sens J. 2016;16:5397-405.

Schal C. Relation among efficacy of insecticides, resistance levels, and sanitation in the control of the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol. 1988;81(2):536-44.

Somanathan H, Borges RM, Warrant EJ, Kelber A. Visual ecology of Indian carpenter bees I: light intensities and flight activity. J Comp Physiol A. 2008;194(1):97-107.

Spitschan M, Aguirre GK, Brainard DH, Sweeney AM. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci Rep. 2016;6(1):1-14.

Stange G. The ocellar component of flight equilibrium control in dragonflies. J Comp Physiol. 1981;141(3):335-47.

Stejskal V. ‘Economic Injury Level’ and preventive pest control. J Pest Sci. 2003;76(6):170-2.

Svensson AM, Rydell J. Mercury vapour lamps interfere with the bat defence of tympanate moths (Operophteraspp.; Geometridae). Anim Behav. 1998;55(1):223-6.

Svensson AM, Eklöf J, Skals N, Rydell J. Light dependent shift in the anti-predator response of a pyralid moth. Oikos. 2003;101(2):239-46.

Szaz D, Horvath G, Barta A, Robertson BA, Farkas A, Egri A, Kriska G. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution. PLoS One. 2015;10(3):e0121194.

Sudd JH. The foraging method of Pharaoh's ant, Monomorium pharaonis (L.). Anim Behav. 1960;8(1-2):67-75.

Taylor GJ, Ribi W, Bech M, Bodey AJ, Rau C, Steuwer A, Warrant EJ, Baird E. The dual function of orchid bee ocelli as revealed by X-ray microtomography. Curr Biol. 2016;26(10):1319-24.

Tobias W. Sommernächtliches 'Schneetreiben' am Main. Zum Phänomen des Massenfluges von Eintagsfliegen. Natur und Museum.1996;126(2):37-54.

Tobler I. Effect of forced locomotion on the rest-activity cycle of the cockroach. Behav Brain Res. 1983;8:351-60.

Tobler I, Neuner-Jehle M. 24-h variation of vigilance in the cockroach Blaberus giganteus. J Sleep Res. 1992;1(4):231-9.

Uribe-MN, Wolff M, de Carvalho CJB. Synanthropy and ecological aspects of Muscidae (Diptera) in a tropical dry forest ecosystem in Colombia. Revista Brasileira de Entomologia. 2010;54(3):462-70.

Wada-Katsumata A, Robertson HM, Silverman J, Schal C. Changes in the peripheral chemosensory system drive adaptive shifts in food preferences in insects. Front Cell Neurosci. 2018:281.

Walter JA, Ives AR, Tooker JF, Johnson DM, Life history and habitat explain variation among insect pest populations subject to global change. Ecosphere. 2018;9(5):e02274.

Warrant EJ, Kelber A, Wallén R, Wcislo WT. Ocellar optics in nocturnal and diurnal bees and wasps. Arthropod Struct Dev. 2006;35(4):293-305.

Warrant E, Dacke M. Vision and visual navigation in nocturnal insects. Annu Rev Entomol. 2011;56:239-54.

Warrant E, Frost B, Green K, Mouritsen H, Dreyer D, Adden A, Heinze S. The Australian Bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front Behav Neurosci. 2016;10:77.

Wehner R. Polarization vision – a uniform sensory capacity? J Exp Biol. 2001;204(14):2589-96.

Westby KM, Medley KA. Cold nights, city lights: artificial light at night reduces photoperiodically induced diapause in urban and rural populations of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2020;57(6):1694-99.

Wildermuth H. Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften. 1998;85(6):297-302.

Wilson M. The functional organisation of locust ocelli. J Comp Physiol. 1978;124(4):297-316.

Wilson JF, Baker D, Cheney J, Cook M, Ellis M, Freestone R., Young H. A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study. Ann Appl Biol. 2018;173:180-9.

Yang EC, Lin HC, Hung YS. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol. 2004;50(10):913-25.

Zhukovskaya M, Novikova E, Saari P, Frolov RV. Behavioral responses to visual overstimulation in the cockroach Periplaneta americana L. J Comp Physiol A. 2017; 203(12):1007-15.




DOI: http://dx.doi.org/10.24855/biosfera.v14i2.669

© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"