Биологический контроль заболеваний злаковых культур c применением бактерий рода Pantoea
Аннотация
Рассмотрена проблема снижения продуктивности злаковых культур грибковыми (Fusarium, Puccinia, Zymoseptoria, Botrytis) и бактериальными (Xanthomonas и Erwinia) фитопатегенами. Обсуждены данные о разнообразии грибковых и бактериальных фитопатогенов, поражающих злаковые культуры, и о молекулярных механизмах их действия. Отмечены ключевые фитопатогены и особенности развития заболеваний. Проанализированы исследования механизмов антагонистической активности, направленной на подавление развития фитопатогенов. В контексте поиска альтернатив химическим средствам защиты растений повышается интерес к бактериям рода Pantoea как к перспективным агентам биологического контроля. Анализируются механизмы защиты растений бактериями рода Pantoea, в том числе механизмы стимуляции иммунитета и антагонистические соединения, что может способствовать разработке инновационных инокулянтов для комплексного контроля заболеваний. Штаммы бактерий рода Pantoea, ассоциированные с растениями, демонстрируют высокую эффективность в стимуляции роста злаковых культур. Этот эффект достигается действием различных механизмов, влияющих на способность фиксировать атмосферный азот, продуцировать фитогормоны и сидерофоры, солюбилизировать фосфаты и калий. Таким образом, род Pantoea является перспективным для разработки комплексных биологических средств защиты растений от фитопатогенов и для развития экологически чистых способов ведения сельского хозяйства, снижающих чрезмерное использование химических удобрений и пестицидов.
Ключевые слова
Полный текст:
PDFКак процитировать материал
Литература
Список русскоязычной литературы
1. Кабашникова ЛФ. Прайминг защитных реакций в растениях при патогенезе: приобретенный иммунитет. Журнал Белорусского государственного университета. Экология. 2020;4:19-29. https://doi.org//10.46646/2521-683X/2020-4-19-29.
2. Колпакова ДЕ, Серазетдинова ЮР, Фотина НВ, Заушинцена АВ, Асякина ЛК, Лосева АИ. Микробная биофортификация злаковых культур: перспективы и текущее развитие. Техника и технология пищевых производств. 2024;54(2):191-211. https://doi.org/10.21603/2074-9414-2024-2-2500.
3. Живых АВ, ред. Обзор фитосанитарного состояния культур в Российской Федерации посевов сельскохозяйственных в 2024 году и прогноз развития вредных объектов в 2025 году. Москва: Министерство сельского хозяйства Российской Федерации; 2025.
4. Тютерев СЛ. Экологически безопасные индукторы устойчивости растений к болезням и физиологическим стрессам. Вестник защиты растений 2015;1(83):3-13.
Общий список литературы/References
1. Kabashnikova LF. [Priming of plant defense responses during pathogenesis: acquired immunity]. Journal of the Belarusian State University. Zhurnal Belorusskogo Gosudarstvennogo Universiteta Ekologiya. 2020;4:19-29. https://doi.org//10.46646/2521-683X/2020-4-19-29. (In Russ.).
2. Kolpakova DYe, Serazetdinova YuR, Fotina NV, Zaushintsena AV, Asiakina LK, Loseva AI. [Microbial biofortification of grain crops: current state and prospects]. Tekhnika i Tekhnologiya Pischevykh Proizvodstv. 2024;54(2):191-211. https://doi.org/10.21603/2074-9414-2024-2-2500. (In Russ.).
3. Zhivykh AV, ed. [Review of the Phytosanitary Condition of Crops in the Russian Federation and a Forcast for the Development of Harmful Objects in 2025]. Moscow: Ministry of Agriculture of the Russian Federation; 2025.
4. Tiuterev SL. [Environmentally safe inducers of plant resistance to diseases and physiological stresses]. Vestnik Zaschity Rasteniy. 2015;1(83):3-13. (In Russ.).
5. Abdel-Azeem AM, Abdel-Azeem MA, Darwish AG, Nafady NA, Ibrahim NA. Fusarium: Biodiversity, ecological significances, and industrial applications. In: Yadav A, Mishra S, Singh S, Gupta A, eds. Recent advancement in white biotechnology through fungi. Cham: Springer: 2019 p. 201-61. https://doi.org/10.1007/978-3-030-10480-1_6.
6. Abdelaziz AM, Hashem AH, El-Sayyad, GS, El-Wakil DA, Selim S, Alkhalifah DHM, Attia MS. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop Plant Pathol. 2023;48:105-27. https://doi.org/10.1007/s40858-022-00544-7.
7. Abdel-Aziz MS, Ghareeb MA, Hamed AA, Rashad EM, El-Sawy ER, Saad IM, Ghoneem KM. Ethyl acetate extract of Streptomyces spp. isolated from Egyptian soil for management of Fusarium oxysporum: The causing agent of wilt disease of tomato. Biocatal Agric Biotechnol. 2021;37:102185. https://doi.org/10.1016/j.bcab.2021.102185.
8. Aggarwal R, Kulshreshtha D, Sharma S, Singh VK, Manjunatha C, Bhardwaj SC, Saharan MS. Molecular characterization of Indian pathotypes of Puccinia striiformis f. sp. tritici and multigene phylogenetic analysis to establish inter- and intraspecific relationships. Genet Mol Biol. 2018;41(4):834-42. https://doi.org/10.1590/1678-4685-GMB-2017-0171.
9. Ahmad I, Mazhar K, Atiq M, Khalaf AK, Rashid MHU, Asif M, Ahmed S, Adil Z, Fayyaz A, Al-Sadoon MK, Al-Otaibi HS. Epidemiology and management of Fusarium wilt of Eucalyptus camaldulensis through systemic acquired resistance. PeerJ. 2024;12:e17022. https://doi.org/10.7717/peerj.17022.
10. Ali A, Iftikhar Y, Mubeen M, Ali H, Zeshan MA, Asad Z, Zafar-ul-Hye M, Rehman MA, Abbas M, Rafique M, Ghani MU. Antagonistic potential of bacterial species against fungal plant pathogens (FPP) and their role in plant growth promotion (PGP): A review. Int J Exp Bot. 2022;91(9):1859-77. https://doi.org/10.32604/phyton.2022.021734.
11. Ali AA, El-Ashry RM, Aioub AAA. Animal manure rhizobacteria co-fertilization suppresses phytonematodes and enhances plant production: evidence from field and greenhouse. J Plant Dis Prot. 2022;129:155-69. https://doi.org/10.1007/s41348-021-00529-9.
12. Anand A, Falquet L, Abou-Mansour E, L'Haridon F, Keel C, Weisskopf L. Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving Pseudomonas. mBio. 2023;14(5):e0085723. https://doi.org/10.1128/mbio.00857-23.
13. Andrade de LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms. 2023;11(4):1088. https://doi.org/10.3390/microorganisms11041088.
14. Aziz A, Verhagen B, Magnin-Robert M, Couderchet M, Clément C, Jeandet P, Trotel-Aziz P. Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards. Plant Soil. 2016;405:141-53. https://doi.org/10.1007/s11104-015-2783-z.
15. Bakker MG, Brown DW, Kelly AC, Kim HS, Kurtzman CP, Mccormick SP, Ward TJ. Fusarium mycotoxins: A trans-disciplinary overview. Can J Plant Pathol. 2018;40:161-71. https://doi.org/10.1080/07060661.2018.1433720.
16. Bakker PA, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CM. Induced systemic resistance and the rhizosphere microbiome. Plant Pathol J. 2013;29(2):136-43. https://doi.org/10.5423/PPJ.SI.07.2012.0111.
17. Bandral D, Gupta V, Gupta SK, Jamwal G, Amin Z, Mohiddin FA, Ashraf, S Raish M. Assessment of pathogenicity and molecular profiles of Puccinia striiformis race causing stripe rust in wheat. Physiol Mol Plant Pathol. 2025;136:102530. https://doi.org/10.1016/j.pmpp.2024.102530.
18. Bandurska H, Niedziela J, Chadzinikolau T. Separate and combined responses to water deficit and UV-B radiation. Plant Sci. 2013;213:98-105. https://doi.org/10.1016/j.plantsci.2013.09.003.
19. Bandurska H, Pietrowska-Borek M, Cieślak M. Response of barley seedlings to water deficit and enhanced UV-B irradiation acting alone and in combination. Acta Physiol. Plant. 2012;34:161-71. https://doi.org/10.1007/s11738-011-0814-9.
20. Banke S, McDonald BA. Migration patterns among global populations of the pathogenic fungus Mycosphaerella graminicola. Mol Ecol. 2005;14:1881-96. https://doi.org/10.1111/j.1365-294X.2005.02536..
21. Bencheikh A, Belabed I, Rouag N. Fusarium head blight of wheat: current knowledge on associated species and their mycotoxins, pathogenicity diversity, and management strategies. Australasian Plant Pathol. 2024;53:457-71 https://doi.org/10.1007/s13313-024-00995-3.
22. Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Mangral Z, Ilyas N, Sayyed RZ, Muthusamy G, Kim W, Dar TUH. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J Appl Microbiol. 2022;133(5):2717-41. https://doi.org/10.1111/jam.15796.
23. Boixel AL, Chelle M, Suffert F. Patterns of thermal adaptation in a globally distributed plant pathogen: Local diversity and plasticity reveal two-tier dynamics. Ecol Evol. 2022;12(1):e8515. https://doi.org/10.1002/ece3.8515.
24. Brady SF, Wright SA, Lee JC, Sutton AE, Zumoff CH, Wodzinski RS, Beer SJ, Clardy J. Pantocin B, an antibiotic from Erwinia herbicola discovered by heterologous expression of cloned genes. J Am Chem Soc. 1999;121(50):11912-3. https://doi.org/10.1021/ja992790m.
25. Cain TJ, Smith AT. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J Inorg Biochem. 2021;218:111407. https://doi.org/10.1016/j.jinorgbio.2021.111407.
26. Campillay-Llanos W, Ortega-Farías S, González-Colville P, Díaz GA, López-Flores MM, López-Olivari R. Modeling the effects of extreme temperatures on the infection rate of Botrytis cinerea using historical climate data (1951–2023) of Central Chile. Agronomy. 2025;15(3):608. https://doi.org/10.3390/agronomy15030608.
27. Carmona-Hernandez S, Reyes-Pérez JJ, Chiquito-Contreras RG, Rincon-Enriquez G, Cerdan-Cabrera CR, Hernandez-Montiel LG. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy. 2019;9(3):121. https://doi.org/10.3390/agronomy9030121.
28. Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW. Bacterial volatile compound-based tools for crop management and quality. Trends Plant Sci. 2021;26:968-83. https://doi.org/10.1016/j.tplants.2021.05.006.
29. Chen, X. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Sec. 2020;12:239-51. https://doi.org/10.1007/s12571-020-01016-z.
30. Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A, Eshelli M, Alenezi FN, Vallat A, Luptakova L, Yahiaoui B, Cherrad S, Vacher S, Rateb ME, Belbahri L. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. Int J Mol Sci. 2019;20(16):3989. https://doi.org/10.3390/ijms20163989.
31. Chouhan R, Ahmed S, Gandhi SG. Over-expression of PR proteins with chitinase activity in transgenic plants for alleviation of fungal pathogenesis. J Plant Pathol. 2023;105(1):69-81. https://doi.org/10.1007/s42161-022-01226-8.
32. Clardy J, Fischbach MA, Walsh CT. New antibiotics from bacterial natural products. Nat Biotechnol. 2006;(12):1541-50. https://doi.org/10.1038/nbt1266.
33. Davis EW II, Okrent RA, Manning VA, Trippe KM. Unexpected distribution of the 4-formylaminooxyvinylglycine (FVG) biosynthetic pathway in Pseudomonas and beyond. PLoS ONE. 2021;16(4):e0247348. https://doi.org/10.1371/journal.pone.0247348.
34. Dawlaty J, Zhang X, Fischbach MA, Clardy J. Dapdiamides, tripeptide antibiotics formed by unconventional amide ligases. J Nat Prod. 2010;73(3):441-6. https://doi.org/10.1021/np900685z.
35. Dertz EA, Xu J, Stintzi A, Raymond KN. Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc. 2006;128;22-3. https://doi.org/10.1021/ja055898c.
36. Dijk M, Morley T, Rau ML, Saghai Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat Food. 2021;2(7):494-501. https://doi.org/10.1038/s43016-021-00322-9.
37. Don SMY, Schmidtke LM, Gambetta JM, Steel CC. Volatile organic compounds produced by Aureobasidium pullulans induce electrolyte loss and oxidative stress in Botrytis cinerea and Alternaria alternata. Res Microbiol. 2021;172(1):103788. https://doi.org/10.1016/j.resmic.2020.10.003.
38. Dos Santos C, Franco OL. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants. 2023;12(11):2226. https://doi.org/10.3390/plants12112226.
39. Drakopoulos D, Kägi A, Six J, A Zorn, Wettstein FE, Bucheli TD, Forrer H-R, Vogelgsang S. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agricult Syst. 2021;192:103198. https://doi.org/10.1016/j.agsy.2021.103198.
40. Du S, Trivedi P, Wei Z, Feng J, Hu HW, Bi L, Liu YR. The proportion of soil-borne fungal pathogens increases with elevated organic carbon in agricultural soils. Msystems. 2022;7:e01337-21. https://doi.org/10.1128/msystems.01337-21.
41. Duchateau S, Crouzet J, Dorey S, Aziz A. The plant-associated Pantoea spp. as biocontrol agents: Mechanisms and diversity of bacteria-produced metabolites as a prospective tool for plant protection. Biological Control. 2024;188:105441. https://doi.org/10.1016/j.biocontrol.2024.105441.
42. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann Agric Environ Med. 2016;23(2):206-22. https://doi.org/10.5604/12321966.1203879.
43. Eizner E, Ronen M, Gur Y, Gavish A, Zhu W, Sharon A. Characterization of Botrytis-plant interactions using PathTrack© - an automated system for dynamic analysis of disease development. Mol Plant Pathol. 2017;18(4):503-12. https://doi.org/10.1111/mpp.12410.
44. El-Rahman A, Shaheen HA, El-Aziz A, Rabab M, Ibrahim DS. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egypt J Biol Pest Control. 2019;29(1):41. https://doi.org/10.1186/s41938-019-0143-7
45. Fanai A, Bohia B, Lalremruati F, Lalhriatpuii N, Lalrokimi, Lalmuanpuii R, Singh PK, Zothanpuia. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: an updated review. PeerJ. 2024;12:e17882. https://doi.org/10.7717/peerj.17882.
46. Fasusi OA, Amoo AE, Babalola OO. Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Antonie Van Leeuwenhoek. 2021;114(10):1683-708. https://doi.org/10.1007/s10482-021-01633-4.
47. Figueroa M, Hammond-Kosack KE, Solomon PS. A review of wheat diseases-a field perspective. Mol Plant Pathol. 2018;19(6):1523-36. https://doi.org/10.1111/mpp.12618.
48. Gamir J, Darwiche R, Van't Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F. The sterol-binding activity of pathogenesis-related protein 1 reveals the mode of action of an antimicrobial protein. Plant J. 2017;89(3):502-9. https://doi.org/10.1111/tpj.13398.
49. Gao H, Guo M, Song J, Ma Y, Xu Z. Signals in systemic acquired resistance of plants against microbial pathogens. Mol Biol Rep. 2021 Apr;48(4):3747-59. https://doi.org/10.1007/s11033-021-06344-7.
50. Garbeva P, Weisskopf L. Airborne medicine: Bacterial volatiles and their influence on plant health. New Phytol. 2020;226:32-43. https://doi.org/10.1111/nph.16282.
51. Gauthier C, Lavoie S, Piochon M, Martinez S, Milot S, Déziel E. Structural determination of ananatoside A: An unprecedented 15-membered macrodilactone-containing glycolipid from Pantoea ananatis. Carbohydr Res. 2019;471:13-8. https://doi.org/10.1016/j.carres.2018.10.009.
52. Giddens SR, Bean DC. Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid. Int J Antimicrob Agents. 2007;29(1):93-7. https://doi.org/10.1016/j.ijantimicag.2006.08.028.
53. Giddens SR, Houliston GJ, Mahanty HK. The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta. Environ Microbiol. 2003;5(10):1016-21. https://doi.org/10.1046/j.1462-2920.2003.00506.x.
54. Giraldo P, Benavente E, Manzano-Agugliaro F, Gimenez E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy. 2019;9(7):352. https://doi.org/10.3390/agronomy9070352.
55. Golonka R, Yeoh BS, Vijay-Kumar M. The iron tug-of-war between bacterial siderophores and innate immunity. J Innate Immun. 2019;11(3):249-62. https://doi.org/10.1159/000494627.
56. Goncharov AA, Glebova AA, Tiunov AV. Trophic interactions between Fusarium species and soil fauna: A meta-analysis of experimental studies. Appl Soil Ecol. 2020;145:103302. https://doi.org/10.1016/j.apsoil.2019.06.005.
57. Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, Xu Y, Shen Q, Kümmerli R, Jousset A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5(8):1002-10. https://doi.org/10.1038/s41564-020-0719-8.
58. Guerinot ML. Microbial iron transport. Annu Rev Microbiol. 1994;48:743-72. https://doi.org/10.1146/annurev.mi.48.100194.003523.
59. Guo K, Yang J, Yu N, Luo L, Wang E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Commun. 2023;4(2):100499. https://doi.org/10.1016/j.xplc.2022.100499.
60. Habschied K, Krstanović V, Zdunić Z, Babić J, Mastanjević K, Šarić GK. Mycotoxins biocontrol methods for healthier crops and stored products. J Fungi. 2021;7(5):348. https://doi.org/10.3390/jof7050348.
61. Han DY, Coplin DL, Bauer WD, Hoitink HA. A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathology. 2000;90(4):327-32. https://doi.org/10.1094/PHYTO.2000.90.4.327.
62. Hartmann M, Zeier J. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquire resistance. Curr Opin Plant Biol. 2019;50:44-57. https://doi.org/10.1016/j.pbi.2019.02.006.
63. Hartung W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol. 2010;37:806-12. https://doi.org/10.1071/FP10058.
64. Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6(1):58. https://doi.org/10.1186/s40168-018-0445-0.
65. Hendry S, Steinke S, Wittstein K, Stadler M, Harmrolfs K, Adewunmi Y, Sahukhal G, Elasri M, Thomashow L, Weller D, Mavrodi O, Blankenfeldt W, Mavrodi D. Functional analysis of phenazine biosynthesis genes in Burkholderia spp. Appl Environ Microbiol. 2021;87(11):e02348-20. https://doi.org/10.1128/AEM.02348-20.
66. Hernandez Montiel LG, Zulueta Rodriguez R, Angulo C, Rueda Puente EO, Quiñonez Aguilar EE, Galicia R. Marine yeasts and bacteria as biological control agents against anthracnose on mango. J Phytopathol. 2017;165:833-40. https://doi.org/10.1111/jph.12623.
67. Hernandez-Montiel LG, Gutierrez-Perez ED, Murillo-Amador B, Vero S, Chiquito-Contreras RG, Rincon-Enriquez G. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol Technol. 2018;139:37-7. https://doi.org/10.1016/j.postharvbio.2018.01.015.
68. Hyder S, Gondal AS, Rizvi ZF, Ahmad R, Alam MM, Hannan A, Ahmed W, Fatima N, Inam-Ul-Haq M. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci Rep. 2020;10(1):13859. https://doi.org/10.1038/s41598-020-69410-3.
69. Itkina DL, Suleimanova AD, Sharipova MR. Isolation, purification, and identification of the secretion compound Pantoea brenneri AS3 with fungicidal activity. Appl Biochem Microbiol. 2022;58:456-62. https://doi.org/10.1134/S000368382204007X.
70. Jasim B, Sreelakshmi S, Mathew J, Radhakrishnan EK. Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech. 2016;6(2):187. https://doi.org/10.1007/s13205-016-0508-5.
71. Jiménez-Reyes MF, Carrasco H, Olea AF, Silva-Moreno E. Natural compounds: a sustainable alternative to the phytopathogens control. Journal of the Chilean Chemical Society. 2019;64(2):4459-65. http://dx.doi.org/10.4067/S0717-97072019000204459.
72. Jin M, Liu L, Wright SA, Beer SV, Clardy J. Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angew Chem Int Ed Engl. 2003;42(25):2898-901. https://doi.org/10.1002/ange.200351053.
73. Jin Y, Szabo LJ, Carson M. Century-Old mystery of Puccinia striiformis life history solved with the identification of berberis as an alternate host. Phytopathology. 2010;100:432-35. https://doi.org/10.1094/PHYTO-100-5-0432.
74. Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Hesham AL, Upadhyay R, Sharma G, Manoharachary C, Gupta V, eds. Fungal biotechnology and bioengineering. Fungal biology. Cham: Springer, Cham; 2020. р. 457-70. https://doi.org/10.1007/978-3-030-41870-0_20.
75. Kang SH, Cho HS, Cheong H, Ryu CM, Kim JF, Park SH. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J Microbiol Biotechnol. 2007;17(1):96-103.
76. Karlsson I, Persson P, Friberg H. Fusarium head blight from a microbiome perspective. Front Microbiol. 2021;12:628373. https://doi.org/10.3389/fmicb.2021.628373.
77. Karlsson M, Atanasova L, Jensen DF, Zeilinger S. Necrotrophic mycoparasites and their genomes. Microbiol Spectr. 2017;5(2):10.1128/microbiolspec.funk-0016-2016. https://doi.org/10.1128/microbiolspec.funk-0016-2016.
78. Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Co-application of beneficial microorganisms and nanoparticles to improve wheat growth in infected Fusarium culmorum soil. Appl Soil Ecol. 2024;203:105622, https://doi.org/10.1016/j.apsoil.2024.105622.
79. Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens – Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants. 2022;28(2):485-504. https://doi.org/10.1007/s12298-022-01146-y.
80. Khabbaz S, Zhang L, Cáceres L, Sumarah M, Wang A, Abbasi P. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Ann Appl Biol. 2015;166:456-71. https://doi.org/10.1111/aab.12196.
81. Khanday AH, Badroo IA, Wagay NA, Rafiq S. Role of phenolic compounds in disease resistance to plants. In: Lone R, Khan S, Mohammed Al-Sadi A, eds. Plant phenolics in biotic stress management. Singapore: Springer, Singapore; 2024. р. 455-79. https://doi.org/10.1007/978-981-99-3334-1_19.
82.Kim SH, Vujanovic V. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Appl Microbiol Biotechnol. 2016;100:5257-72. https://doi.org/10.1007/s00253-016-7539-z.
83. Kini K, Dossa R, Dossou B, Mariko M, Koebnik R, Silué D. A semi-selective medium to isolate and identify bacteria of the genus Pantoea. J Gen Plant Pathol. 2019;85:424-7. https://doi.org/10.1007/s10327-019-00862-w.
84. Kisil OV, Trefilov VS, Sadykova VS, Zvereva ME, Kubareva EA. Surfactin: its biological activity and possibility of application in agriculture. Appl Biochem Microbiol. 2023;59(1):1-13. https://doi.org/10.1134/S0003683823010027.
85. Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci. 2019;10:845. https://doi.org/10.3389/fpls.2019.00845.
86. Kong HG, Shin T.S, Kim T.H, Ryu C-M. Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front Plant Sci. 2018;9:90. https://doi.org/10.3389/fpls.2018.00090.
87. Kouzai Y, Akimoto-Tomiyama C. Seed-borne bacterium of rice, Pantoea dispersa BB1, protects rice from the seedling rot caused by the bacterial pathogen Burkholderia glumae. Life. 2022;12(6):791. https://doi.org/10.3390/life12060791.
88. Kumar S, Kumar S, Mohapatra T. Interaction between macro- and micro-nutrients in plants. Front Plant Sci. 2021;12:665583. https://doi.org/10.3389/fpls.2021.665583.
89. Kushwaha P, Kashyap PL, Srivastava AK, Tiwari RK. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum). Braz J Microbiol. 2020;51(1):229-41. https://doi.org/10.1007/s42770-019-00172-5.
90. Lahlali R, Aksissou W, Lyousfi N, Ezrari S, Blenzar A, Tahiri A, Ennahli S, Hrustić J, MacLean D, Amiri, S. Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Microbial Pathogenesis. 2020;139:103914. https://doi.org/10.1016/j.micpath.2019.103914.
91. Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. Biological control of plant pathogens: A global perspective. Microorganisms. 2022;10(3):596. https://doi.org/10.3390/microorganisms10030596.
92. Li L, Chen R, Zuo Z, Lv Z, Yang Z, Mao W, Liu Y, Zhou Y, Huang J, Song Z. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB. World J Microbiol Biotechnol. 2020;36(2):27. https://doi.org/10.1007/s11274-019-2744-4.
93. Lim JA, Lee DH, Kim BY, Heu S. (2014). Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. Journal of Biotechnology. 2014;188:7-8. https://doi.org/10.1016/j.jbiotec.2014.07.440.
94. Liu M, Rodrigue N, Kolmer J. Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution. Heredity. 2014;112:443-53. https://doi.org/10.1038/hdy.2013.123.
95. López SMY, Pastorino G., Balatti PA. Volatile organic compounds profile synthesized and released by endophytes of tomato (Solanum lycopersici L.) and their antagonistic role. Arch Microbiol. 2021;203(4):1383-97. https://doi.org/10.1007/s00203-020-02136-y.
96. Lorenzi AS, Bonatelli ML, Chia MA, Peressim L, Quecine MC. Opposite sides of Pantoea agglomerans and its associated commercial outlook. Microorganisms. 2022;10(10):2072. https://doi.org/10.3390/microorganisms10102072.
97. Luo M, Purdy H, Avis. TJ. Compost bacteria provide antifungal activity against grey mold and Alternaria rot on bell pepper fruit. Botany. 2019;97(3):221-30. https://doi.org/10.1139/cjb-2018-0180.
98. Luziatelli F, Ficca AG, Cardarelli M, Melini F, Cavalieri A, Ruzzi M. Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth-promotion and tolerance to heavy metals. Microorganisms. 2020;8(2):153. https://doi.org/10.3390/microorganisms8020153.
99. Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu J-K, Maharachchikumbura SSN. From natural hosts to agricultural threats: The evolutionary journey of phytopathogenic fungi. Journal of Fungi. 2025;11(1):25. https://doi.org/10.3390/jof11010025.
100. Magnin-Robert M, Quantinet D, Couderchet M, Aziz A, Trotel-Aziz P. Differential induction of grapevine resistance and defense reactions against Botrytis cinerea by bacterial mixtures in vineyards. BioControl. 2013;58:117-31. https://doi.org/10.1007/s10526-012-9474-y.
101. Magri M, Abdel-Mawgoud AM. Identification of putative producers of rhamnolipids/glycolipids and their transporters using genome mining. Curr Res Biotechnol. 2022;4:152-66. https://doi.org/10.1016/j.crbiot.2022.02.002.
102. Mahdavian K, Ghorbanli M, Kalantari KM. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russ J Plant Physiol. 2008;55:560-3. https://doi.org/10.1134/S1021443708040195.
103. Mansoori M, Heydari A, Hassanzadeh N, Rezaee S, Naraghi L. Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium wilt disease. J Plant Prot Res. 2013;53(2):154-7. https://doi.org/10.2478/jppr-2013-0023.
104. Marin VR, Ferrarezi JH, Vieira G, Sass DC. Recent advances in the biocontrol of Xanthomonas spp. World J Microbiol Biotechnol. 2019;35(5):72. https://doi.org/10.1007/s11274-019-2646-5.
105. Martínez-Dalmau J, Berbel J, Ordóñez-Fernández R. Nitrogen fertilization. A review of the risks associated with the inefficiency of its use and policy responses. Sustainability. 2021;13:5625. https://doi.org/10.3390/su13105625.
106. Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U, El Ghalid M, Guy L, López-Berges MS, Richards TA, Felix G, Di Pietro A. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol. 2016;1:10643. https://doi.org/10.1038/nmicrobiol.2016.43.
107. McGovern RJ. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015;73:78-92. https://doi.org/10.1016/j.cropro.2015.02.021.
108. Morales G, Moragrega C, Montesinos E, Llorente I. Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni. PLoS One. 2018;13(3):e0193813. https://doi.org/10.1371/journal.pone.0193813.
109. Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes J. 2019;3(3):177-90. https://doi.org/10.1094/PBIOMES-01-19-0007-R.
110. Mousavi-Derazmahalleh M, Chang S, Thomas G, Derbyshire M, Bayer PE, Edwards D, Nelson MN, Erskine W, Lopez-Ruiz FJ, Clements J, Hane JK. Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. BMC Genomics. 2019;20(1):385. https://doi.org/10.1186/s12864-019-5774-2.
111. Nie X, Wang Z, Huang B, Gu Q, Xu R, Yu S, Xiong C, Liu Z, Wei W, Bi K, Zhu W. The cell death-inducing protein BcPlp1 from Botrytis cinerea contributes to pathogenicity and modulates plant resistance. Plant Sci. 2025;356:112492. https://doi.org/10.1016/j.plantsci.2025.112492.
112. Nikitin DA, Ivanova EA, Semenov MV, Zhelezova AD, Ksenofontova NA, Tkhakakhova AK, Kholodov VA. Diversity, ecological characteristics and identification of some problematic phytopathogenic Fusarium in soil: A review. Diversity. 2023;15(1):49. https://doi.org/10.3390/d15010049.
113. Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95-109. https://doi.org/10.1038/s41579-018-0116-y.
114. Nunes C, Usall J, Teixidó N, Fons E, Viñas I. Post-harvest biological control by Pantoea agglomerans (CPA-2) on golden delicious apples. J Appl Microbiol. 2002;92(2):247-55. https://doi.org/10.1046/j.1365-2672.2002.01524.x.
115. Okrent RA, Trippe KM, Manning VA, Walsh CM. Detection of 4-formylaminooxyvinylglycine in culture filtrates of Pseudomonas fluorescens WH6 and Pantoea ananatis BRT175 by laser ablation electrospray ionization-mass spectrometry. PLoS One. 2018;13(7):e0200481. https://doi.org/10.1371/journal.pone.0200481.
116. Orton ES, Deller S, Brown JKM. Mycosphaerella graminicola: From genomics to disease control. Mol Plant Pathol. 2011;12:413-24. https://doi.org/10.1111/j.1364-3703.2010.00688.x.
117. Palmieri D, Ianiri G, Del Grosso C, Barone G, De Curtis F, Castoria R, Lima G. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae. 2022;8(7):577. https://doi.org/10.3390/horticulturae8070577.
118. Piqué N, Miñana-Galbis D, Merino S, Tomás JM. Virulence factors of Erwinia amylovora: A review. Int J Mol Sci. 2015;16(6):12836-54. https://doi.org/10.3390/ijms160612836.
119. Pollard AT, Okubara PA. Real-time PCR quantification of Fusarium avenaceum in soil and seeds. J Microbiol Methods. 2019;157:21-30. https://doi.org/10.1016/j.mimet.2018.12.009.
120. Poppe L, Vanhoutte S, Höfte M. Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. Eur J Plant Pathol. 2003;109:963-73. https://doi.org/10.1023/B:EJPP.0000003747.41051.9f.
121. Quamruzzaman M, Manik SMN, Shabala S, Zhou M. Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules. 2021;11(6);788. https://doi.org/10.3390/biom11060788.
122. Rampersad SN. Pathogenomics and management of Fusarium diseases in plants. Pathogens. 2020;9:340. https://doi.org/10.3390/pathogens9050340.
123. Rana A, Rani A, Nayana KR, Deswal S, Singh AP, Rana S, Chahar M, Singh N, Dhaka RK. Biotic stress alleviation in plant using rhizobacteria: An overview of mechanism of action, antimicrobial compounds production, (nano) formulations and employment methods. Indian J Microbiol. 2025;65(2):583-609. https://doi.org/10.1007/s12088-024-01429-w.
124. Rani A, Rana A, Dhaka RK, Singh AP, Chahar M, Singh S, Nain L, Singh KP, Minz D. Bacterial volatile organic compounds as biopesticides, growth promoters and plant-defense elicitors: Current understanding and future scope. Biotechnol Adv. 2023;63:108078. https://doi.org/10.1016/j.biotechadv.2022.108078.
125. Raymond KN, Dertz EA, Kim SS. Enterobactin: An archetype for microbial iron transport. Proc Natl Acad Sci USA. 2003;100:3584-88. https://doi.org/10.1073/pnas.0630018100.
126. Rijavec T, Lapanje A. Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol. 2016;7:1785. https://doi.org/10.3389/fmicb.2016.01785.
127. Robinson LJ, Verrett JN, Sorout N, Stavrinides J. A broad-spectrum antibacterial natural product from the cystic fibrosis isolate, Pantoea agglomerans Tx10. Microbiol Res. 2020;237:126479. https://doi.org/10.1016/j.micres.2020126479.
128. Rong S, Xu H, Li L, Chen R, Gao X, Xu Z. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pestic Biochem Physiol. 2020;162:69-77. https://doi.org/10.1016/j.pestbp.2019.09.003.
129. Saadouli I, Mosbah A, Ferjani R, Stathopoulou P, Galiatsatos I, Asimakis E, Marasco R, Daffonchio D, Tsiamis G, Ouzari H-I. The impact of the inoculation of phosphate-solubilizing bacteria Pantoea agglomerans on phosphorus availability and bacterial community dynamics of a emi-arid soil. Microorganisms. 2021;9(8):1661. https://doi.org/10.3390/microorganisms9081661.
130. Safara S, Harigh, B, Bahramnejad B, Ahmadi S. Antibacterial activity of endophytic bacteria against sugar beet root rot agent by volatile organic compound production and induction of systemic resistance. Front Microbiol. 2022;13:921762. https://doi.org/10.3389/fmicb.2022.921762.
131. Safdarpour F, Khodakaramian G. Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. Journal of Microbial Biology. 2019;7:77-90. https://doi.org/10.22108/bjm.2017.21709.
132. Salwan R, Sharma M, Sharma A, Sharma V. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress. 2023;7:100140. https://doi.org/10.1016/j.stress.2023.100140.
133. Samal B, Chatterjee S. Bacterial quorum sensing facilitates Xanthomonas campesteris pv. campestris invasion of host tissue to maximize disease symptoms. J Exp Bot. 2021;72(18):6524-43. https://doi.org/10.1093/jxb/erab211.
134. Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 2012;160(3):1630-41. https://doi.org/10.1104/pp.112.201913.
135. Santander RD, Biosca EG. Erwinia amylovora psychrotrophic adaptations: evidence of pathogenic potential and survival at temperate and low environmental temperatures. PeerJ. 2017;5:e3931. https://doi.org/10.7717/peerj.3931.
136. Saravanakumar D, Thomas A, Banwarie N. Antagonistic potential of lipopeptide producing Bacillus amyloliquefaciens against major vegetable pathogens. Eur J Plant Pathol. 2016;154:319-35. https://doi.org/10.1007/s10658-018-01658-y.
137. Scavino AF, Pedraza RO. The role of siderophores in plant growth-promoting bacteria. Bacteria in Agrobiology: Crop Productivity. 2013:265-85. https://doi.org/10.1007/978-3-642-37241-4_11.
138. Semenov MV, Krasnov GS, Semenov VM, van Bruggen A. Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere. J. Fungi. 2022;8:251. https://doi.org/10.3390/jof8030251.
139. Semenov MV, Nikitin DA, Stepanov AL, Semenov VM. The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil. Eurasian Soil Sci. 2019;52:319-32. https://doi.org/10.1134/S1064229319010137.
140. Serazetdinova Yu, Chekushkina D, Borodina E, Kolpakova D, Minina V, Altshuler O, Asyakina L. Synergistic interaction between Azotobacter and Pseudomonas bacteria in a growth-stimulating consortium. Foods Raw Mater. 2025;13(2):376-93. https://doi.org/10.21603/2308-4057-2025-2-651.
141. Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31(3):446-59. https://doi.org/10.1080/13102818.2017.1286950.
142. Sharma L, Marques G. Fusarium, an entomopathogen – A myth or reality? Pathogens. 2018;7:93. https://doi.org/10.3390/pathogens7040093.
143. Shen N, Li S, Li S, Zhang H, Jiang M. The siderophore-producing bacterium, Bacillus siamensis Gxun-6, has an antifungal activity against Fusarium oxysporum and promotes the growth of banana. Egypt J Biol Pest Control. 2022;32:34. https://doi.org/10.1186/s41938-022-00533-7.
144. Silva da JF, Barbosa RR, de Souza AN, da Motta OV, Teixeira GN, Carvalho VS, de Souza AL, de Souza Filho GA. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion. Genet Mol Res. 2015;14(4):15301-11. https://doi.org/10.4238/2015.November.30.6.
145. Singh P, Singh RK, Li HB, Guo DJ, Sharma A, Lakshmanan P, Malviya MK, Song XP, Solanki MK, Verma KK, Yang LT, Li YR. Diazotrophic bacteria Pantoea dispersa and Enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Front Microbiol. 2021;11:600417. https://doi.org/10.3389/fmicb.2020.600417.
146. Singh RK, Singh P, Guo DJ, Sharma A, Li DP, Li X, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR. Root-derived endophytic diazotrophic bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 promote nitrogen assimilation and growth in sugarcane. Front Microbiol. 2021;12:774707. https://doi.org/10.3389/fmicb.2021.774707.
147. Smith DDN, Williams AN, Verrett JN, Bergbusch NT, Manning V, Trippe K, Stavrinides J. Resistance to two vinylglycine antibiotic analogs is conferred by inactivation of two separate amino acid transporters in Erwinia amylovora. J Bacteriol. 2019;201(9):e00658-18. https://doi.org/10.1128/JB.00658-18.
148. Smits THM, Duffy B, Blom J, Ishimaru CA, Stockwell VO. Pantocin A, a peptide-derived antibiotic involved in biological control by plant-associated Pantoea species. Arch Microbiol. 2019;201:713-22. https://doi.org/10.1007/s00203-019-01647-7.
149. Somma S, Scarpino V, Quaranta F, Logrieco AF, Reyneri A, Blandino M, Moretti A. Impact of fungicide application to control T-2 and HT-2 toxin contamination and related Fusarium sporotrichioides and F. langsethiae producing species in durum wheat. Crop Prot. 2022;159:106020. https://doi.org/10.1016/j.cropro.2022.106020.
150. Song Z, Lu Y, Liu X, Wei C, Oladipo A, Fan B. (2020). Evaluation of Pantoea eucalypti FBS135 for pine (Pinus massoniana) growth promotion and its genome analysis. J Appl Microbiol. 2020;129(4):958-70. https://doi.org/10.1111/jam.14673.
151. Soutar CD, Stavrinides J. The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genomics. 2018;293(6):1453-67. https://doi.org/10.1007/s00438-018-1477-7.
152. Spaepen, S. Plant hormones produced by microbes. In: Lugtenberg, B. (eds.). Principles of plant-microbe interactions. Cham: Springer, Cham. 2015. p. 247-56. https://doi.org/10.1007/978-3-319-08575-3_26.
153. Stoll A, Salvatierra-Martínez R, González M, Araya M. The role of surfactin production by Bacillus velezensis on colonization, biofilm formation on tomato root and leaf surfaces and subsequent protection (ISR) against Botrytis cinerea. Microorganisms. 2021;9(11):2251. https://doi.org/10.3390/microorganisms9112251.
154. Stoykov YM, Pavlov AI, Krastanov AI. Chitinase biotechnology: Production, purification, and application. Eng. Life Sci. 2014;15:30-38. https://doi.org/10.1002/elsc.201400173.
155. Suguna S, Parthasarathy S, Karthikeyan G. Induction of systemic resistant molecules in phylloplane of rice plants against Magnaporthe oryzae by Pseudomonas fluorescens. Int Res J Pure Appl Chem. 2020;21(3):25-36. https://doi.org/10.9734/irjpac/2020/v21i330158.
156. Suleimanova AD, Beinhauer A, Valeeva LR, Chastukhina IB, Balaban NP, Shakirov EV, Greiner R, Sharipova MR. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1. Appl Environ Microbiol. 2015;81(19):6790-9. https://doi.org/10.1128/AEM.01384-15.
157. Suleimanova AD, Sokolnikova LV, Egorova EA, Berkutova ES, Pudova DS, Khilyas IV, Sharipova MR. Antifungal activity of siderophore isolated from Pantoea brenneri against Fusarium oxysporum. Russ J Plant Physiol. 2023;70:199. https://doi.org/10.1134/S1021443723602744.
158. Summerell BA. Resolving Fusarium: Current status of the genus. Annu Rev Phytopathol. 2019;57:323-39. https://doi.org/10.1146/annurev-phyto-082718-100204.
159. Syrova DS, Shaposhnikov AI, Makarova NM, Gagkaeva TY, Khrapalova IA, Emelyanov VV, Gogolev YV, Gannibal PB, Belimov AA. Prevalence of the ability to produce abscisic acid in phytopathogenic fungi. Mikol Fitopathol. 2019;53:301-10. https://doi.org/10.1134/S0026364819050064.1
160. Taokaew S, Kriangkrai W. Chitinase-assisted bioconversion of chitinous waste for development of value-added chito-oligosaccharides products. Biology (Basel). 2023;12(1):87. https://doi.org/10.3390/biology12010087.
161. Thissera B, Alhadrami HA, Hassan MHA, Hassan HM, Behery FA, Bawazeer M, Yaseen M, Belbahri L, Rateb ME. Induction of cryptic antifungal pulicatin derivatives from Pantoea agglomerans by microbial co-culture. Biomolecules. 2020;10(2):268. https://doi.org/10.3390/biom10020268.
162. Tilocca B, Cao A, Migheli Q. Scent of a Killer: Microbial volatilome and its role in the biological control of plant pathogens. Front Microbiol. 2020;7;11:41. https://doi.org/10.3389/fmicb.2020.00041.
163. Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol. 2020;18(8):415-27. https://doi.org/10.1038/s41579-020-0361-8.
164. Timmusk S, Nevo E, Ayele F, Noe S, Niinemets Ü. Fighting Fusarium pathogens in the era of climate change: A conceptual approach. Pathogens. 2020;9:419. https://doi.org/10.3390/pathogens9060419.
165. Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants. 2022;11(22):3065. https://doi.org/10.3390/plants11223065.
166. Tripathi D, Raikhy G, Kumar D. Chemical elicitors of systemic acquired resistance – Salicylic acid and its functional analogs. Current Plant Biology. 2019;17:48-59. https://doi.org/10.1016/j.cpb.2019.03.002.
167. Trivedi P, Batista BD, Bazany KE, Singh BK. Plant–microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 2022;234:1951-9. https://doi.org/10.1111/nph.18016.
168. Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot. 2008;64:21-32, https://doi.org/10.1016/j.envexpbot.2007.12.009.
169. Tyagi S, Mulla SI, Lee K-J, Chae J-C, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol. 2018;38:1277-96. https://doi.org/10.1080/07388551.2018.1472551.
170. Valbuena-Rodríguez JL, Fonseca-Guerra I, Buitrago-Yomayusa C, Puentes-S A, Rozo MEB. Isolation and characterization of Pantoea ananatis and P. agglomerans in quinoa: P. ananatis as a potential fungal biocontroller and plant growth promoter. Int Microbiol. 2024. https://doi.org/10.1007/s10123-024-00608-5.
171. van Loon LC. The intelligent behavior of plants. Trends Plant Sci. 2016;21(4):286-94. https://doi.org/10.1016/j.tplants.2015.11.009.
172. Vanneste JL, Yu J, Beer SV. Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. Journal of Bacteriology. 1992;174(9):2785-96. https://doi.org/10.1128/jb.174.9.2785-2796.1992.
173. Veloso J, van Kan JAL. Many shades of grey in Botrytis-host plant interactions. Trends Plant Sci. 2018;23(7):613-22. https://doi.org/10.1016/j.tplants.2018.03.016.
174. Verhagen B, Trotel-Aziz P, Jeandet P, Baillieul F, Aziz A. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Phytopathology. 2011;101(7):768-77. https://doi.org/10.1094/PHYTO-09-10-0242
175. Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF. Seed‐vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol. 2017;122(6):1680-91. https://doi.org/10.1111/jam.13463.
176. Vique G, Mendoza-Barberá E, Ramos-Barbero MD, Blanco-Picazo P, Sala-Comorera L, Quirós P, Atares S, Salaet I, Muniesa M, Rodríguez-Rubio L. Efficacy of Erwinia amylovora and Xanthomonas campestris pv campestris phages to control fire blight and black rot in vivo. Microbiol Spectr. 2025;13(7):e0028025. https://doi.org/10.1128/spectrum.00280-25.
177. Walterson AM, Smith DDN, Stavrinides J. Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS ONE. 2014;9(5):e96208. https://doi.org/10.1371/journal.pone.0096208.
178. Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews. 2015;39:968-84. https://doi.org/10.1093/femsre/fuv027.
179. Weisskopf L, Schulz S, Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol. 2021;19(6):391-404. https://doi.org/10.1038/s41579-020-00508-1.
180. Williams AN, Stavrinides J. Genetic and evolutionary characterization of the major facilitator superfamily transporters of the antibacterial, Pantoea Natural Product 3. Res Microbiol. 2022;173(1-2):103899. https://doi.org/10.1016/j.resmic.2021.103899.
181. Williams AN, Stavrinides J. Pantoea Natural Product 3 is encoded by an eight-gene biosynthetic gene cluster and exhibits antimicrobial activity against multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microbiological Research. 2020;234:126412. https://doi.org/10.1016/j.micres.2020.126412.
182. Wright SA, Zumoff CH, Schneider L, Beer SV. Pantoea agglomerans Strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol. 2001;67(1):284-92. https://doi.org/10.1128/AEM.67.1.284-292.2001. 181
183. Xie S, Liu J, Gu S, Chen X, Jiang H, Ding T. Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. Ann Microbiol. 2020;70:2. https://doi.org/10.1186/s13213-020-01553-0
184. Yang H, Zhang W, Tian P, Li B, Wei S, Zhang S, Li N, Lyu Y, Hu Y. Insights into the mechanism of Sub3 inhibiting Fusarium moniliforme infection in maize. Grain and Oil Science and Technology. 2022;5(1):22-34. https://doi.org/10.1016/j.gaost.2021.11.002.
185. Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants. 2022;11(3):386. https://doi.org/10.3390/plants11030386.
186. Zhao X, Zhou J, Tian R, Liu Y. Microbial volatile organic compounds: antifungal mechanisms, applications, and challenges. Front Microbiol. 2022;13:922450. https://doi.org/10.3389/fmicb.2022.922450.
DOI: http://dx.doi.org/10.24855/biosfera.v17i3.1006
EDN: https://www.elibrary.ru/item.asp?edn=JTQYYG
© ФОНД НАУЧНЫХ ИССЛЕДОВАНИЙ "XXI ВЕК"